

Contents

- MMC characteristics & advantages
- MMC projects and challenges

Solutions to

- Real time simulation of MMC systems
- HIL test bench for MMC Control and protection system validation
- Industrial applications
 - Conclusions

MMC Characteristics

- Commutating inductors are in arms
- Arm currents are continuous
- Capacitors in each cell (energy storage in MMC)
- SM capacitor voltage has to be balanced (on a larger time scale)
- Circulation current among arms

MMC Advantages

- Reduced stress on converter and grid component
- Low switching frequency reduced switch losses
- Low ac harmonic content no need for a filter
- Continuous currents in MMC arm and DC link dc link capacitor omitted
- Fast recovery from AC-bus short-circuit (Better fault ride-through capacity)

MMC Advantages (continued)

- Fast recovery from DC-bus short-circuit, but DC breaker or FB or CDSM topologies are needed
- Improved reliability due to modular design and redundancy in SM- system can remain operating for a certain period even when a few SM are out of order
- Can feed loads without any generators (no limit on short-circuit ratio)
- Easy start-up
- Smaller foot print

MMC and Sub-module

Sub-module (SM) topologies
 Half-bridge (HB): with 2 IGBT and 1 Capacitor
 Full-bridge (FB): with 4 IGBT and 1 Capacitor
 Clamp Double (CD): with 5 IGBT and 2 Capacitors
 others

MMC FBSM STATCOM

Recent MMC HVDC projects in China

Recent MMC HVDC projects in China

Project	Year in operation	Nb. of terminals	Nb. of SM per valve	Rated DC Voltage	Capacity	Application
Nanhui	2011	2	50	60 kV	18 MVA	Wind Energy Integration
Nanao	2013	3	200	320 kV	200 MVA	Wind Energy Integration
Zhoush an	2014	5	250	400 kV	400 MVA	Power supply for islands
Luoping	2016	2	400	±350kV	1GVA	Asynchronous Networks Coupling
Xiamen	2015	2	400	±320 kV	1GVA	Power supply for large cities
DPALIRT						

- New technologies and little engineering experience from existing projects
- Complex control and protection systems
 Which could be supplied by different
 manufacturers in multi-terminal systems
- Expensive to make and maintain a physical test bench

11

Challenges – Structure of MMC C&P system

Challenges – Test matrix and sequence

STATCOM operation	AC & HVDC Operation	Pure DC Operation
 Auto Start sequence Power step command PCP redundancy Internal communication failure AC faults DC faults Valve faults 	 Auto Start sequence Power step command PCP redundancy Operation with and without substation communication AC faults DC faults Valve faults 	 Auto Start sequence Power step command PCP redundancy Operation with and without substation communication AC faults DC faults Valve faults

Challenges – AC and DC faults assignment

 Solutions to validation of MMC C&P systems: Hardware-in-the-loop (HIL) test bench
 Lower cost
 Shorter time for R&D cycle and validation test
 Wider range of tests: steady states, transients, & faults

Challenges for real time simulation of MMC

- challenges for real time simulation and HIL test bench
 - Large number of components
 - Large number of switches, frequent change of switch states
 - > Non-linear elements, e.g. MOV

Large number of I/Os to interface with controllers

- Circuit simplification [1,2]
 - Using one equivalent capacitor for a valve. Loss of details.
- Norton equivalent using Dommel's algorithm[4,5]
 - > Dommel's algorithm[3]: switch $\leftarrow R_{on/off}$, C $\leftarrow R//I_s$.
- Norton equivalent + SSN parallel calculation[7]
 - SSN[6]: state space nodal method for parallel calculation.
- Surrogate networks with Thevenin equivalent[8]
 - SM grouped according to states (insert, bypass, block)
- General MMC valve equivalent circuit [9]
 - for all SM topologies, parallel calculation

Circuit simplification [1,2]

Using one equivalent capacitor for a valve. Loss of details.

- Norton equivalent using Dommel's algorithm[4,5]
 - > Dommel's algorithm[3]: switch $\leftarrow R_{on/off}$, C $\leftarrow R//I_s$.

Fig. 3. (a) Capacitance. (b) Equivalent impedance network.

Fig.3. from reference [3] by H. W. Dommel.

Fig.7. from reference [4] by U. N. Gnanarathna et al.

FROM IMAGINATION TO REAL-TIME

- Norton equivalent + SSN parallel calculation[7]
 - SSN[6]: state space nodal method for parallel calculation.

Surrogate networks with Thevenin equivalent[8]

SM grouped according to states (insert, bypass, block)

General MMC valve equivalent circuit [9]

for of all SM topologies, parallel calculation

(a) HB SM in insert mode and equivalent circuits for (b) positive and (c) negative current directions

22

General MMC valve equivalent circuit [9]

for of all SM topologies, parallel calculation

A general SM equivalent circuit for all operating conditions

 V_{sp} V_{sn} Mode **k1 k**2 $V_{c} + V_{fd}$ V_c - V_{fk} Insert 1 0 V_{fk} - V_{fd} 1 **Bypass** 0 $V_{c} + V_{fd}$ - V_{fd} Diode 0 0 - V_{fk} V_{fk} Fault 1 1

Table I Source voltages in HB SM Equivalent Circuit

General MMC valve equivalent circuit [9]

for of all SM topologies, parallel calculation

Capacitor voltage:

$$V_c(t+T_s) = V_c(t) + \frac{T_s}{C_{SM}} \left(k(t)i_{val}(t) - \frac{V_c(t)}{R_{disc}} \right)$$

VARIABLE k in CAPACITOR VOLTAGE EQUATION FOR HB SM

	Mode	k1	k2	Valve current direction	k	
235	Insert	1	0	either	1	
133	Bypass	0	1	either	0	
	Diodo	0	0	positive	1	A
	Dioue	0	0	negative	0	
DPALIRT						
	FROM	IMAGINATIO	ON TO REAL	-TIME	2	24

General MMC valve equivalent circuit [9] for of all SM topologies, parallel calculation

CPU 0

MMC

valve

SM n

25

CPU

lval

Multi-rate MMC Model

- Multi-rate MMC model in FPGA (T_{fpga}=250 ns) and CPU (Ts: tens of μs)
- Optional MMC models on CPU (25 μs)
- Different SM topologies, HB, FB, CDSM, and other
- For HVDC, STATCOM, other Applications.
- Real time or fast simulation.
- HIL and RCP (rapid control prototyping)
- Hardware IO: Copper wiring or optical fibers
- Example MMC controller
- In RT-LAB or Hypersim platform

FROM

27

Detailed Model of Individual SM

_ _

Each of Individual SM is simulated

yes

In each SM	
Each capacitor voltage controlled individually	yes
Discrepancy of SM capacitance values	yes
Discharge resistance is simulated	yes
Resolution of firing signal	250 ns
Simulation of dead time	yes
Cell short circuit and other faults	yes
Forward voltage of diodes	yes
Diode non linearity	no
Dynamic of IGBT and diode Turn-on and -off	Not yet
FROM IMAGINATION TO REAL-TIME	28

Implementation MMC model in FPGA

- Small calculation time step of 250 ns
- Large number of SM
 - up to 256 SM/valve * 6 valve in VIRTEX 6 (OP7000, ML605) and 256 SM/valve * 6 valve *2 converter in Kintex 7 (OP4500)
 - 512 SM * 6 valve * 2 or more converters in VIRTEX 7(op7020, op5607) (6,000 cells total) including 16 SFP (5 Gbits/s) with AURORA interface protocol
- MMC VBC (low-level controller) and communication protocol could be implemented in same FGPA
- Support multiple FPGAs for HVDC grids

Implementation MMC in FPGA (continued)

- CPU resources is free to simulate larger AC network because no CPU resource is required
 - to calculate the MMC cell models
 - to manage I/O data communication with external controller
- Individual control of each IGBT and SM capacitor voltage
- Providing SM V_{cap} debugging mode to help user developing their controller
- Supporting both RT-LAB and Hypersim Platform

Implementation MMC Model in CPU

- Useful for off-line simulation of simple system (no FPGA needed) and algorithm development with SIMULINK
- Supporting MMC HB, FB, and CDSM topologies
- Unlimited number of SM per valve
- Several CPU cores are used to calculate the MMC and grid models
- 1 CPU can solve 300 SM with a time step of 25µs
- Providing SM Vcap debugging mode to help user developing their controller

Connectivity with External Controller

- Analog and digital I/Os for Vcap, currents, and gating pulses
- SFP optical fiber with Aurora protocol at 1 to 5 Gbits/s (16 links per VIRTEX-7 FPGA)
- SFP optical fiber with Gigabit Ethernet protocol
- Updating interval at a few µs depending on the number of optical fibers, number of cells and controller manufacturer requirements

The small form-factor pluggable (SFP) is a compact, hot-pluggable transceiver used for both telecommunication and data communications applications

Digital Simulating of MMC System

HIL Testing of Actual MMC Controller

MMC Rapid Control Prototyping (RCP)

MMC RCP with Virtual MMC plant and AC grid

System model of Nanao project

Parameters	Sucheng station	Jinniu station	Qingao station	
Transfomre connection	Yn/D11	Yn/D11	Yn/D11	
Rated power (MVA)	240	120	63	
Primary voltage (kV)	110	110	110	
Secondary voltage (kV)	166	166	166	
Primary impedance (pu) [R1,L1]	[0.0025 0.06]	[0.0025 0.06]	[0.0025 0.05]	
Secondary impedance (pu) [R2,L2]	[0.0025 0.06]	[0.0025 0.06]	[0.0025 0.05]	
Grounding resistance (kΩ)	5	5	5	
MMC capacity(MVA)	200	100	50	
Number of SMs in an arm	147	220	220	
Number of redandant SMs	14	20	20	
Rated SM voltage(kV)	2.4	1.6	1.6	

OPAL·RT

The three multi-terminal VSC **HVDC** project

FROM IMAGINATION TO REAL-TIME

HIL testing system

Test matrix and sequence

The same test scenarios are repeated at different stage of production. * FPT: Functional performance test; DPT: Dynamic performance test

FROM IMAGINATION TO REAL-TIME

HIL Test results (F1) - Nanao project

Field Test results (F1) - Nanao project

HIL results (DC charging) – Nanao project

Field Test Results (DC charging) – Nanao project

Luoping (Yunnan Project)

- MMC: 2 converters with 400 half-bridge submodules per valve (or 800 per arm)
- LCC: 2 converters with 12 thyristor each
- Passive filters with circuit breakers: 6 at each terminal
- OLTC with Saturation: 4

Xiamen MMC-based Bi-pole HVDC

HIL results (start-up) – Xiamen project

Closing Ac breaker

Closing charging resistor bypass breaker

HIL results (faults) – Xiamen project

MMC Lab-scale test bench for RCP

Cabinet (Front view)

40U Standard Cabine (1U = 1.75 inch)

OP1200 - Rapid control prototyping for Power Electronics Converters Modular, flexible, configurable

Configurable for different type of converter, topology, number of level (11, 21, 31...), DC Voltage (400V, 700V...), frequency (50Hz, 60Hz) and the output power (6kW, 10kW, 20kW...)

Specifications for a 3-Phases MMC Test Bench with 6kW 400V 11-Level for a total of 60 H-bridge cells in one cabinet

Technical specifications	Value (6 Arm / 11 levels)	
DC Maximum Voltage per 10 cell	400 V	
DC Maximum Current by arm, I phase	15 Arms (1800VA)	
Maximum Output Power	6 KW	
Max AC Voltage for each phase (with index modulation at 0.9)	120/208 V 3ph	
Max AC RMS current at fundamental frequency	16.7 A	
MOSFET Switching Frequency	0-10 kHz	
Number of levels	11	6
Maximum Cell Voltage	40 V	
Cell Capacitor	6 mF	al
Arm inductor	1.75 mH	

FROM IMAGINATION TO REAL-TIME

MMC Lab-scale test bench for RCP

OP1200 OPAL-RT Lab-Scale MMC Test Bench

The **OP1200**, OPAL-RT Lab-Scale MMC Test Bench, includes:

OP1210 - 10 H-bridge cells MMC Converter Specifications

Opal-RT provides a lab Modular Multilevel Converter (OP1210) 2U module Scalable up to 10 H-bridge cells. The OP1210 is designed for 2KW (Rail or Shelves)

Technical specifications	Values
Power Supply	48V
Total Number of H-Bridge Cells	10
Number of power output connectors	2
Max DC Voltage per cell	40 VDC
Max RMS current per arm	15 A
Serial Communication (Tx/Rx Fiber Optic)	50/10 Mbps
Switch status refresh rate	500 ns
ADC sample rate (Cell voltage and current)	50 kHz
Desktop/Rack (Rail or Shelves)	Height 2U Depth 20"
Weight	10Kg

FROM IMAGINATION TO REAL-TIME

OP1210 - 10 H-bridge cells MMC Converter Module Bloc Diagram

OP1210 - 10 H-bridge cells MMC Converter Module Detailed Block Diagram

Summary

- MMC C&P systems is very complex, making complete integration test before commissioning is extremely important
- HIL complements off-line simulation tools:
 - -To increase simulation speed to meet tight development schedule
 - -To increase testing coverage by doing more tests in less time
 - -To increase fidelity by interfacing with actual hardware
 - -To perform large integration tests with several controllers
 - -All of the above are to reach the goal of better MMC C&P system quality by thorough validation of real life situation
- Multi-levels converter with multi-terminals require continues
 improving of the HIL tools

	Summary				
	Challenges	OPAL-RT Solutions			
	Very small time step for SM	250 ns or 500 ns			
	Small time step for AC grid, arm inductors and transformer	20 to 60 micros using ARTEMIS-SSN or HYPERSIM nodal solver			
	Very small time step for arm inductor and transformer models	500 ns to 1 us using eHS FPGA nodal solver (Q4 2014)			
	Large number of SM per converter	1500 to 6000 cells per FPGA			
	Large number of terminal for HVDC grids	Use several FPGA boards (systems with up to 10 FPGA have been delivered)			
Connection to controller with fast rate and small latency		Aurora or Gigabit Ethernet 1 to 5 us update depending on number of optical fiber links and number of cells			
	Accuracy for non-linear elements, e.g. MOV for fault simulation and other large disturbances	Iterative solver			
	Tested reliability	Several projects			
	FROM IMAGINATION TO REAL-TIME 55				

References

- 1. N. Ahmed, L. Ängquist, S. Norrga, H.-P. Nee, "Validation of the continuous model of the modular multilevel converter with blocking/deblocking capability," 10th IET International Conference on AC and DC Power Transmission (ACDC 2012), 6 pp., 2012.
- 2. O. Venjakob, S. Kubera, R. Hibberts-Caswell, P.A. Forsyth, T.L. Maguire, "Setup and Performance of the Real-Time Simulator used for Hardware-in-Loop-Tests of a VSC-Based HVDC scheme for Offshore Applications", Proceedings of International Conference on Power Systems Transients (IPST'13), Vancouver, Canada, July 18-20, 2013.
- 3. H. W. Dommel, "Digital computation of electromagnetic transients in single and multi-phase networks," IEEE Trans. Power App. Syst., vol. PAS-88, no. 4, pp. 388–399, Apr. 1969.
- 4. U. N. Gnanarathna, A. M. Gole, and R. P. Jayasinghe, "Efficient Modeling of Modular Multilevel HVDC Converters (MMC) on Electromagnetic Transient Simulation Programs," IEEE Trans. Power Del., vol. 26, no. 1, pp. 316-324, Jan. 2011.
- 5. P. Le-Huy, P. Giroux, J.-C. Soumagne, "Real-Time Simulation of Modular Multilevel Converters for Network Integration Studies," International Conference on Power Systems Transients, Delft, Netherlands June 14-17, 2011.
- 6. C. Dufour, J., Mahseredjian, J., Belanger, "A Combined State-Space Nodal Method for the Simulation of Power System Transients", IEEE Transactions on Power Delivery, vol. 26, no, 2, pp. 928-935, 2011.
- H. Saad, C. Dufour, J. Mahseredjian, S. Dennetière, S. Nguefeu, "Real Time simulation of MMCs using the Combined State-Space Nodal Approach," Proceedings of International Conference on Power Systems Transients (IPST'13), Vancouver, Canada, July 18-20, 2013.
- 8. T. L. Maguire, B. Warkentin, Y. Chen, and J. Hasler, "Efficient Techniques for Real Time Simulation of MMC System", Proceedings of International Conference on Power Systems Transients (IPST'13), Vancouver, Canada, July 18-20, 2013.
- 9. W. Li; J. Belanger, "An Equivalent Circuit Method for Modelling and Simulation of Modular Multilevel Converter in Real-time HIL Test Bench," IEEE Transactions on Power Delivery, 2016

Thanks.

FROM IMAGINATION TO REAL-TIME