

Energy & QoS in Systems & Networks

Erol Gelenbe

www.ee.imperial.ac.uk/gelenbe

Intelligent Systems & Networks Group Electrical & Electronic Eng'g Dept Imperial College London SW7 2BT

2020 ICT Carbon 🔶 **1.43BTONNES** CO,

2007 ICT = **0.83BTONNES** CO₂ ~ Aviation = 2% Growth 4%

Imperial College London

IT footprints Emissions by sub-sector, 2020

PCs, peripherals and printers infrastructure 57% and devices 25% mate Group source: Data

Telecoms

Total emissions: 1.43bn tonnes CO₂ equivalent

360m tons CO₂

260m tons CO₂

EU 2012 \rightarrow ICT = 4.7% of Electricity Worldwide

D8.1: Overview of ICT energy consumption

Figure 3-1: Worldwide use phase electricity consumption of communication networks, personal computers and data centers. Their combined share in the total worldwide electricity consumption has grown from about 4% in 2007 to 4.7% in 2012.

Computing Loads are Generally Low

Energy Consumption at Low Loads Remains High

"The Case for Energy-Proportional Computing," Luiz André Barroso, Urs Hölzle, *IEEE Computer* December 2007

Energy Efficiency = Machine Utilization/Power

Energy Proportional Computing

"The Case for Energy-Proportional Computing," Luiz André Barroso, Urs Hölzle, *IEEE Computer* December 2007

Energy Efficiency = Server Utilization/Power Imperial College

Is this Socially Acceptable & Sustainable? **Estimated Added Value of ICT** 5~7% = CO2 Savings/ ICT CO2 Emissions Google ... and Other Myths - 0.3Wh per « Google search » - Facebook: 500Wh / User / Year - Energy Costs \$ can be as High as 15% of ICT **Operational Costs** - US Costs are 40% Less than UK and 70% Less than Germany (Canada ?) Mobile and Intermittent Computing ?? Load Averaging in Space and Time?? **Re-Use Heat ?? New Wireless Business Model?? Imperial College** Iondon

Our Work on Energy and ICT

- Energy Aware Ad Hoc Networks (2004)
- Wired Network test-bed to seek way forward (2009)
- Wired Energy-Aware Software Defined Network (2010-11)
- QoS-Energy Aware routing algorithms (2010-12)
- Energy and Time Trade-Offs in Internet Search (2010-13)
- Energy-QoS Trade-Offs in Servers and Clouds (2010-13)
- Micro & Nano-Scale (2013-2016)
- EU Projects: EU FP7 Fit4Green, ERA-NET ECROPS ...

Wireless: EPSRC ECROPS Project (2013-2016)

Effective Transmission Time VS Power P $_{T}$

Number of Bits Correctly Transmitted per Units of Power

$$\overline{D(P_T)} = \frac{f\left(\frac{rP_T}{B+\alpha P_T}\right)}{P_E + P_T}.$$

Imperial College London

D_{ef f}

Energy Efficiency and Computer SystemsIdeal: Power Proportional to Utilisation

 $\Pi = \omega \rho$

energy consumption per job in joules

$$J_{job} = \Pi/\lambda = \omega E[S]$$

Reality is Different

 $\Pi = A + B\rho \qquad J_{job} = \frac{A}{\lambda} + BE[S]$

Power for Compute-Intensive Apps

Power in Network Intensive HTTP

Simple Composite Cost C_{Job} for Delay and Energy • Composite Cost Function: a.[Average Response Time per Job] + b.[Average Energy Consumption per Job]

$$C_{job} = \frac{aE[S]}{1 - \lambda E[S]} + bJ_{job}$$
$$= \frac{aE[S]}{1 - \lambda E[S]} + \frac{bA}{\lambda} + bBE[S]$$

Measurements

To validate the energy-QoS metric and optimum load model, we conducted a series of experiments using jobs executing on a server class system having a quad-core Intel Xeon 3430 (8M cache, 2.4 GHz), 2 GB RAM, single 150 GB SATA hard drive, and 2 on-board Gigabit Ethernet interfaces. The system runs Linux (Ubuntu) with CPU throttling enabled with the ondemand governor, which dynamically adjust the cores' frequency depending on load. A client machine is attached to the server through a fast Ethernet switch to generate the workload, and the client machine also measures the system's power consumption [].

We measured power consumption when it is idle, i.e. when it has no external jobs to execute, to be A = 69.5 Watts, which corresponds to the value of A in equation (4).

Imperial College London Then we measured the average energy consumed by a single job from observations obtained from serving a large number of jobs (1000), the average power consumption and the total running time of the experiment. The value of B was measured to be 13.24 Watts per job on average. The measured value of J_{job} and the calculated results from (4) we the experimentally estimated values of A and B are shown

Validation Average Energy Consumption per Job vs Load

Optimisation of the Load Optimum Load that Minimises the Composite Cost

Theory versus Experimental Data

London

Optimum Load Sharing among N Heterogenous Systems • Cost Function

$$C_{job} = \sum_{i=1}^{N} p_i \{ \frac{aE[S_i]}{1 - \lambda_i E[S_i]} + bJ_{job}^i \}$$
$$= \sum_{i=1}^{N} p_i \{ \frac{aE[S_i]}{1 - \lambda_i E[S_i]} + \frac{bA_i}{\lambda_i} + bB_i E[S_i] \}$$

Optimum Load Sharing

l - 1

$$\rho_{i} = 1 - \sqrt{\frac{a\sigma_{i}}{\frac{a\sigma_{i}}{(1 - \rho_{1})^{2}} + b[B_{1}\sigma_{i} - B_{i}]}}$$

where $\sigma_i = E[S_1]/E[S_i]$ is the speed-up factor Imperial College London

On-Off System

F is the ON probability, f is the On-Off rate, γ
 is the On-Off Energy Consumption

$$C_{job} = \frac{aE[S]}{F - \lambda E[S]} + b\frac{FA + \gamma f}{\lambda} + bB\frac{E[S]}{F}$$

Optimum Load is Given by

$$\rho^* = \frac{\sqrt{\frac{b(FA+\gamma f)}{a}}}{1+\sqrt{\frac{b(FA+\gamma f)}{a}}}$$

Imperial College London

Figure 7. Measured and theoretical average response time versus load, for the system with ON-OFFs with f = 0.005.

A=69.5, B=13.32, E[S]=5.7754 s, y=5.268 KJ

Figure 10. Theoretical and measured energy consumption per job versus load, in the system with ON-OFFs for different values of f. We se that energy can be saved when f is small and the "off" cycle is long.

Figure 8. Theoretical and measured energy consumption per job versus load, in the system with ON-OFFs for f = 0.005. Figure 9. Composite Energy-QoS cost metric versus load in the system with ON-OFFs for f = 0.005.

Sensible Selection of a Cloud Response Time vs Load

Sensible Selection of a Cloud Response Time vs Load

Single Job Queue

Sensible Selection of a Cloud **Composite Cost Function vs Load**

Single Job Queue – A=1 B=10

Energy efficiency in wired networks

- Techniques for energy savings in wireless (sensor) networks have been very widely studied
- Wired networks have been largely neglected even though they are massive consumers of power
- In a wired packet network the problem is to:
 - Minimize total power consumption, and obviously ...
 - Respect users' QoS needs

The Network Case: Experiments

Imperial College London

Measurements on Feasibility Using our 46-node Laboratory Packet Network Test-Bed:

E. Gelenbe and S. Silvestri, ``Optimisation of Power Consumption in Wired Packet Networks," Proc. QShine'09, 22 (12), 717-728, LNICST, Springer Verlag, 2009.

Fig. 1. Topology of the test-bed in use

Power Measurement on Routers

Example of Measured Router Power Profile

Experiments with a Self-Aware Approach Minimise Power subject to End-to-End Delay (80ms) Constraint

[10] E. Gelenbe, ``Steps Toward Self-Aware Networks,'' Comm. ACM, 52 (7), pp. 66-75, July 2009.

[15] E. Gelenbe and T. Mahmoodi "Energy aware routing in the Cognitive Packet Network", presented at NGI/Co July 2010, submited for publication.

Measuring Avg Power Over All Routers Imperial College London

Power and Delay with EARP Energy Aware Routing Protocol

Im Lo

Power Savings and QoS using EARP

Fig. 2. Scenario two: Total power consumption in the network Vs. the experiment's elapsed time.

UIUUII

(b) Average length of the end-to-end path

Fig. 3. Scenario two: round trip delay and the route length of the active flows.

Can Analysis and Optimisation Help for the Network Case?

IDEA:

Build a Queueing Network with Multiple Customer Classes
- A Node is a Network Router or a Network Link
- A Class is a Flow of Packets that follow the same Path

- Add Triggers to Model Control Signals that Reroute the Normal Customer Classes and also Consume Resources

Define a Cost Function that Includes Power Consumption as A Function of Load, and also A verage Response Time
Solve using G-Network Theory
Optimise with Gradient Descent & Non-Linear Optimisation

G-networks allow product form solutions including the routing control

Rerouting controls occur infrequently (seconds) as compared to individual packet service times (1ms) and end-to-end packet travel times (10ms)

- The system attains steady-state between the control instants
- G-networks [11,12,13] with triggered customer movement and multiple classes are a convenient modelling paradigm for packet networks with controls
- Network with N queues, R routers and L links, N=R∪L
- Set of user traffic classes U
- The default routing decision of a user of class k from node i to node j is represented by the probability P(i,k,j)
- The external arrival rate of packets of class k to router r is denoted by λ(r,k)
 Imperial College
 London

G-networks allow product form solutions that include the effect of re-routing Current default routing decision of a user of class k from neighbouring queues i to j is P(i,k,j)

- Control traffic class (r,k): acts at router r on traffic class k
- A control packet of class (r,k) moves from queue i to j with probability p((r,k),i,j)
- Control function Q(r,k,j) : probability that user of class k at router r is directed by the corresponding control packet of type (i,k) to link j.
- External arrival rate of control packets of class (r,k) to router i : λ⁻(i(r,k))

Traffic in the Network

- The steady state probability that a router r or a link l contains at least one packet of user class k is given by $q(r,k) = \frac{\Lambda_R(r,k)}{\mu_r + \Lambda^-(r,(r,k))}$, if $r \in \mathbb{R}$ $q(l,k) = \frac{\Lambda_L(l,k)}{\mu_l}$, if $l \in \mathbb{L}$
- The total arrival rates of user packets of class k to the routers and links are given by

$$\Lambda_{R}(r,k) = \lambda(r,k) + \sum_{l \in \mathbf{L}} q(l,k)P(l,k,r)\mu_{l}, \text{ if } r \in \mathbf{R}$$

 $\Lambda_L(l,k) = \sum_{r \in \mathbf{R}} [q(r,k)P(r,k,l)\mu_r + \Lambda^-(r,(r,k))q(r,k)Q(r,k,l)], \text{if } l \in \mathbf{L}$

Control Traffic

 The total arrival rate to router or link j of control traffic of class (i,k) is given by $\Lambda^{-}(j,(i,k)) = \lambda^{-}(j,(i,k)) + \sum_{i=1}^{n} p((i,k),l,j)c(l,(i,k))\mu_{l}, \text{if } i, j \in \mathbf{R}$ $\Lambda^{-}(j,(i,k)) = \sum p((i,k),r,j)K(r,(i,k))\mu_r, \text{if } i \in \mathbf{R}, j \in \mathbf{L}, i \neq r$ The steady-state probability that a router r contains at least one packet of class k is $c(l,(i,k)) = \frac{\sum_{r \in \mathbb{R}} p((i,k),r,l)K(r,(i,k))\mu_r}{\text{, if } l \in \mathbb{L}}$ μ_l

And for the routers

$$K(r,(i,k)) = \frac{\lambda^{-}(r,(i,k)) + \sum_{l \in \mathbf{L}} p((i,k),l,r)c(l,(i,k))\mu_l}{\mu_l}, \text{ if } r \in \mathbf{R}, r \neq i$$

Pr
Average Queue Length

• Each user class is assumed to be handled by separate queues in routers, so the average queue length in router r is

$$N(r,k) = \frac{q(r,k)}{1 - q(r,k)}, r \in \mathbf{R}$$

• On the other hand, all packets within a link are handled in a first-come-first-serve order, so the average queue length at link / is

$$N(l) = \frac{B(l)}{1 - B(l)}, l \in \mathbf{L}$$

where

$$B(l) = \sum_{k \in \mathbf{U}} [q(l,k) + \sum_{i \in \mathbf{R}} c(l,(i,k))]$$

is the steady state probability that link / is busy Imperial College London

QoS metrics

• The relevant QoS metrics, e.g. the total average delay through the network for a packet of class k

$$T(k) = \sum_{l \in \mathbf{L}} \pi(l,k) \frac{N(l)}{\Lambda_L(l,k)} + \sum_{r \in \mathbf{R}} \pi(r,k) \frac{N(r,k)}{\Lambda_R(l,k)}, \quad \bar{T} = \sum_k T(k)$$

here
$$\pi(r,k) = \frac{\Lambda_R(r,k)}{\lambda^+(k)}, r \in \mathbf{R} \qquad \pi(l,k) = \frac{\Lambda_L(l,k)}{\lambda^+(k)}, l \in \mathbf{L}$$

are the probabilities that a packet of class k enters router r or link I respectively, and the total traffic of class k, s being the source router of this class is

Imperial College $\lambda^+(k) = \sum_{r \in \mathbb{R}} \lambda(r,k) = \lambda(s,k)$ London

1

Power Consumption Model

• Routers

$$P_i = \alpha_i + g_R(\Lambda_i) + c_i \sum_{k \in \mathbf{U}} \Lambda_R^-(i, (i, k)), i \in \mathbf{R}$$

where α_i is the static router power consumption, $g_R(.)$ is an increasing function of the packet processing rate as in Figure 1 and $c_i > 0$ is a proportionality constant related to the power consumed for the processing of the rerouting control

• Links $P_i = \beta_i + g_L(\Lambda_i), i \in \mathbf{L}$

where β_i is the static power consumption when the link interface is on and $g_L(.)$ is an increasing function of the data transmission rate on the link as in Figure 2

Gradient Descent Optimisation

- The routing optimisation can be expressed as the minimization of a function that combines power consumption and (e.g.) the network average delay : Minimize $G = c \sum_{i \in N} P_i + \overline{T}$ Using the Q(i,k,j)
- We therefore need to design algorithm to obtain the parameters Q^o(i,k,j) at the operating points of the network

$$\underline{X} = [\underline{\lambda}, \underline{\lambda}^{-}, \mu, \underline{P}^{+}, p]$$

A. Gradient Descent Optimization

- Algorithm of O(|U|.|N|³) complexity [High!!]
 - Initialize the values Q(i,k,j) and choose η>0
 - Solve |U| systems of |N | non-linear equations to obtain the steady state probabilities q(i,k) from G-network theory
 - Solve |U| systems of |N | linear equations for gradient descent using G-network theory

$$\frac{\partial \mathbf{q}_k}{\partial Q(x,m,y)} = \boldsymbol{\gamma}_k^{xmy} (\mathbf{I} - \mathbf{W}_k)^{-1}$$

- Update the values of Q(i,k,j) using the nth computational step $Q_{n+1}(i,k,j) = Q_n(i,k,j) - \eta \frac{\partial G}{\partial O(i,k,j)}|_{Q(i,k,j)=Q_n(i,k,j)}$

Gradient Descent on Top of EARP

A Model for Time & Energy that is both Cyber & Physical, and E. Gelenbe Phys Rev Dec 2010

- N robots or people Search in an Unknown & Large City
- N Packets Travel in a Very-Large Network
- Search by Software Robots for Data in a Very Large Distributed Database
- Biological Agents Diffusing through a Random Medium
 until they Encounter a Docking Point
- Particles Moving in a Random Medium until they Encounter an Oppositely Charged Receptor
- Randomised Gradient Minimisation (e.g. Simulated Annealing) on Parallel Processors

Imperial College

Example from Wireless Sensor Networks Event occuring at location (x,t) is reported by the Sensor Node at location (n,t+d) if $||X(n)-x|| < \varepsilon$. The node sends out a packet at t+d. The packet containing M(n,X(n),t+d) travels over multiple hops and reaches the Output Node at time t+d+T

Source of Event

 $\sqrt{2}M(n,t+d)$

Imperial College

Output Node

A Packet Needs to Go From S to Destination Using Multiple Hops .. But it is Ignorant about its Path and all Kinds of Bad Things Can Happen .. Can it Still Succeed?

Source

Imperial College

B

45

Destination

Yet Another Situation .. Packet Hara Kiri

I-the-Packet have already visited 6 hops I'll do hara-kiri 'coz I'm too old!!

Source

B

Destination

Some Time Later .. Packet Retransmission

The packet had visited 6 hops .. I'll drop it 'coz 'tis too old!!

Destination

6+M Time units elapsed: the packet must be lost. I'll-send it

again.

1NN

Source

Imperial College

B

Network Model

- Packets go from some source S to a Destination (that may move) that is initially at distance D
- The wireless range is $\delta \ll D$, there are no collisions
- Packets can be lost in [t,t+ Δ t] with probability $\lambda\Delta$ t anywhere on the path
- There is a time-out R (in time or number of hops), modelled as being timed-out in [t,t+∆t] with probability r∆t with a subsequent retransmission delay M
- Packets may or not know the direction they need to go – we do not nail down the routing scheme with any specific assumptions
- We avoid assumptions about the geography of nodes in m-dimensions, and assume temporal and spatial homogeneity and temporal and spatial independence

Imperial College

Simulations of Average Travel Time vs Constant Time-Out δ=1, D=10, M=20, No Loss Perfect Ignorance: b=0, c=1

Imp

Diffusion Model

- Do not consider the detailed topology of nodes,

- Assume homogeneity with respect to the distance to destination, and over time,

- Represent motion as a continuous process, for packets it would be a continuous approximation of discrete motion,

- Allow for loss (of packets) or destruction of the robotic searcher, or inactivation of the biological agent

- Include a time-out for the source to re-send the packet

- After each Time-Out, the sender waits M time units and then Imperial College packet under identical statistical conditions - The distance of the searcher with respect to the destination at time t is X(t); it is homogeneous with respect to position and time

- Motion of the searcher is characterised by parameters b and

- The drift $b = E[X(t + \Delta t) - X(t)|X=x] / \Delta t$ - The instantaneous variance $c = E[(X(t + \Delta t) - X(t) - b\Delta t)^2 | X = x] / (\Delta t)^2$

C

- Loss (of packets), destruction of the robotic searcher, inactivation of the biological agent, represented by $\lambda \Delta t$

- Time-out is represented by $r\Delta t$, and after each Time-out, the sender waits M (on average $1/\mu$) time units and then resends the packet which then travels under iid statistical Cullege 09/09/2013

N independent searchers: find average time for the first one to get there

$$\begin{aligned} \frac{\partial f_i}{\partial t} &= -b \frac{\partial f_i}{\partial x_i} + \frac{1}{2} c \frac{\partial^2 f_i}{\partial x_i^2} - a_i f_i + [\mu W_i(t) + P_i(t)] \delta(x_i - D) \\ \frac{dP_i(t)}{dt} &= -P_i(t) + \sum_{i=1}^{N} \lim_{x_i \to 0^+} [-bf_i + \frac{1}{2} c \frac{\partial f_i}{\partial x_i}] \\ \frac{dL_i(t)}{dt} &= \lambda \int_{0^+}^{\infty} f_i dx_i - (r + a_i) L_i(t) \\ \frac{dW_i(t)}{dt} &= r \int_{0^+}^{\infty} f_i dx_i + rL_i(t) - (\mu + a_i) W_i(t) \\ a_j &= -\sum_{i=1, i \neq j}^{N} \lim_{x_i \to 0^+} [-bf_i + \frac{1}{2} c \frac{\partial f_i}{\partial x_i}], \\ P_i(t) + L_i(t) + W_i(t) + \int_{0^+}^{\infty} f_i dx_i = 1; \quad \lim_{x \to 0^+} f = 0. \\ \mathbf{E}[\mathbf{T}^*] &= \mathbf{P}_i^{-1} - 1 \text{ obtained from the stationary solution} \end{aligned}$$

54

infinity

P(†)

 $f_i(z) = A[e^{u_1 z} - e^{u_2 z}], 0 \le z \le D$ $f_i(z) = A[e^{(u_1 - u_2)D} - 1]e^{u_2 z}, z \ge D$ $u_{1,2} = \frac{b \pm \sqrt{+2c(\lambda + r + a)}}{2}$ $a_{i} = \sum_{j=1, i \neq j}^{N} \lim_{z_{j} \to 0} [bf_{j}(z_{j}) + \frac{1}{2}c \frac{\partial^{2} f_{j}(z_{j})}{\partial z_{j}^{2}}]$ P(†) infinity Imperial College 55 London

Expected Travel Time to Destination for N Searchers with initial Distance D

 $T^* = \inf \{T_1, ..., T_N\}$

- Drift b ≤ 0 or b>0, Second Moment Param.
 c≥0
- Avg Time-Out R=1/r, M=1/μ, then we derive:

$$E[T \mid D] = \frac{1}{N} \left[e^{-2D(\frac{\lambda + r + a}{b - \sqrt{b^2 + 2c(\lambda + r + a)}})} - 1 \right] \left[\frac{\mu + r + a}{(r + a)\mu + a} \right]$$

Imperial College

Effective Travel Time & Energy

 $T^* = \inf \{T_1, ..., T_N\}$ • E[$\tau_{eff} | D$] = [1+E[T* | D]]. P[searcher is moving] • J(N | D) = N.E[$\tau_{eff} | D$]

$$J(N \mid D) = [e^{-2D(\frac{\lambda + r + a}{b - \sqrt{b^2 + 2c(\lambda + r + a)}})} -1][\frac{1}{\lambda + r + a}]$$

Imperial College

Comparing Theory with Simulation for N=1

Average Travel Time vs Time-Out and Different N and Loss Rates

Locus of Average Time and Energy vs Time-Out

Locus of Average Time and Energy vs Time-Out with Different Distances

Single packet travel delay in a wireless network with imperfect routing and packet losses

- E. Gelenbe "A Diffusion model for packet travel time in a random multi-hop medium", ACM Trans. on Sensor Networks, Vol. 3 (2), p. 111, 2007
- N Packets or Searchers sent simultaneously in a homogenous environment:
- E. Gelenbe "Search in unknown random environments", Physical Review E82: 061112 (2010), Dec. 7, 2010.

Results ACM MAMA 2011 Omer Abdelrahman & Erol Gelenbe Single packet travel delay in a wireless network with non-homogenous parameters, imperfect routing and packet losses

Large Network with Non-Homogenous
 Coverage

 Modeling an Attacking Packet in the presence of Defense Near the Target (Destination) Node

→ Phase Transition Effect

Imperial College

Non-HomogenousCaseOriginalDiscretized

 $\frac{1}{2} \frac{\partial^2 [c(z)f(z,t)]}{\partial [b(z)f(z,t)]} = \frac{\partial [b(z)f(z,t)]}{\partial [b(z)f(z,t)]}$ $\partial f(z,t)$ ∂t $-(\lambda(z) + r)f(z,t) + [P(t) + \mu W(t)]\delta(z - D)$ $\frac{dL(t)}{dt} = -rL(t) + \int_{0}^{\infty} \lambda(z)f(z,t)dz$ $\frac{dW(t)}{dt} = -\mu W(t) + r[L(t) + \int_0^\infty f(z,t)dz]$ $\frac{dP(t)}{dt} = -P(t) + \lim_{z \to 0^+} \left[\frac{1}{2} \frac{\partial [c(z)f(z,t)]}{\partial z} - b(z)f(z,t)\right]$ $1 = P(t) + W(t) + L(t) + \int_{-\infty}^{\infty} f(z,t)dz$

$$0 = \frac{c_k}{2} \frac{d^2 f_k(z)}{dz^2} - b_k \frac{df_k(z)}{dz} - (\lambda_k + r)f_k(z) \qquad (1)$$

while the equation for the segment where the source is located is:

$$-[P + \mu W]\delta(z - D) = \frac{c_n}{2}\frac{d^2f_n(z)}{dz^2} - b_n\frac{df_n(z)}{dz} - (\lambda_n + r)f_n(z) \quad (2)$$

We will also have:

$$rL = \sum_{k=1}^{m} \lambda_k \int_{Z_{k-1}}^{Z_k} f_k(z) dz$$
 (3)

$$\mu W = r[L + \sum_{k=1}^{m} \int_{Z_{k-1}}^{Z_k} f_k(z) dz]$$
(4)

$$P = \lim_{z \to 0^+} \left[\frac{c_1}{2} \frac{df_1(z)}{dz} - b_1 f_1(z) \right]$$
(5)

and the normalization condition:

$$1 = P + W + L + \sum_{k=1}^{m} \int_{Z_{k-1}}^{Z_k} f_k(z) dz \qquad (6)$$

Discretized Segments

$$E[T] = \left(\frac{1}{r} + \frac{1}{\mu}\right) \times \left[\sqrt{\frac{b_n^2 + 2c_n(\lambda_n + r)}{b_1^2 + 2c_1(\lambda_1 + r)}} \frac{\overline{A}_n \overline{G}_n e^{u_n S_n} - \overline{B}_n \overline{F}_n e^{v_n S_n}}{\overline{G}_n e^{u_n(Z_n - D)} + \overline{F}_n e^{v_n(Z_n - D)}} - 1\right]$$

$$(7)$$

where the remaining parameters are computed as follows. Define:

$$\alpha_k^- = \frac{c_k u_k - c_{k-1} v_{k-1}}{c_k (u_k - v_k)}, \quad \beta_k^- = \frac{c_k u_k - c_{k-1} u_{k-1}}{c_k (u_k - v_k)}$$
$$\alpha_k^+ = \frac{c_k u_k - c_{k+1} v_{k+1}}{c_k (u_k - v_k)}, \quad \beta_k^+ = \frac{c_k u_k - c_{k+1} u_{k+1}}{c_k (u_k - v_k)}$$
(8)

Then set $\overline{A}_1 = 1$ and $\overline{B}_1 = -1$ and for $2 \leq k \leq n$ compute:

$$\begin{bmatrix} \overline{A}_{k} \\ \overline{B}_{k} \end{bmatrix} = \begin{bmatrix} \alpha_{k}^{-} & \beta_{k}^{-} \\ 1 - \alpha_{k}^{-} & 1 - \beta_{k}^{-} \end{bmatrix} \begin{bmatrix} e^{u_{k-1}S_{k-1}} & 0 \\ 0 & e^{u_{k-1}S_{k-1}} \end{bmatrix} \begin{bmatrix} \overline{A}_{k-1} \\ \overline{B}_{k-1} \end{bmatrix}$$
(9)

Then set $\overline{F}_m = 0$ and $\overline{G}_m = e^{v_m Z_m}$, and start another computation at k = m - 1 for $n \leq k \leq m - 1$ with:

$$\begin{bmatrix} \overline{F}_{k} \\ \overline{G}_{k} \end{bmatrix} = \begin{bmatrix} \alpha_{k}^{+} & \beta_{k}^{+} \\ 1 - \alpha_{k}^{+} & 1 - \beta_{k}^{+} \end{bmatrix} \begin{bmatrix} e^{-u_{k+1}S_{k+1}} & 0 \\ 0 & e^{-v_{k+1}S_{k+1}} \end{bmatrix} \begin{bmatrix} \overline{F}_{k+1} \\ \overline{G}_{k+1} \end{bmatrix}$$

Discretized Segments

Remark 1 With n being the index of the discretisation segment that includes the source node at D, it is interesting to see that E[T] only depends on a set of parameters that are computed for values of k = 1, k = n, and on two sets of algebraic iterations between k = 1 and k = n and k = mdown to k = n.

Remark 2 When the source node is in the pen-ultimate segment we have m = n, and:

$$E[T] = \frac{r+\mu}{r\mu} \left[\sqrt{\frac{b_n^2 + 2c_n(\lambda_n + r)}{b_1^2 + 2c_1(\lambda_1 + r)}} \overline{A}_n e^{u_n(D-Z_{n-1})} - 1 \right]$$
(20)

For a homogenous medium m = n = 1 and:

eriai concyc

$$E[T] = \left(\frac{1}{r} + \frac{1}{\mu}\right) \left[e^{u_1 D} - 1\right]$$

Increased Drop Rate Near the Destination Makes it Harder to Reach the Destination

Protected Area of Size S Around Destination with Intrusion Detection and Drops

Imperial College

68

Protected Destination with Perfect Routers b= -1

Now let us introduce a non-homogenous packet drop effect by choosing an integer n to create an acceleration in the packet drop effect and let $S_i = D/(n-1)$ so that:

$$E[T] = \frac{r+\mu}{r\mu} \left[e^{rD} \ e^{D\frac{\sum_{i=1}^{n-1}\lambda_i}{n-1}} - 1 \right]$$
(24)

which yields the following result.

Result 4 If $\lim_{n\to\infty} \frac{\sum_{i=1}^{n-1} \lambda_i}{n-1} = +\infty$ then the packet will never reach the destination node. Otherwise it will reach it in a time which is finite on average, and with probability one. The Figure 2 illustrates **Result 4** by showing that even with a small excess, represented by a > 1, above the o(n)rate of increase for the loss rate λ_k the attacking packet's progress will be indefinitely impeded by the drops, despite the subsequent time-outs

Increased Drop Rate Near the Destination Makes it Hard to Reach the Destination

Energy Consumption: Protected Area of Size S Around Destination with Intrusion Detection and Drops

Increased Drop Rate Near the Destination: Phase Transition Effect for Protection

Imperial College

72
What if the Energy Infrastructure wer Designed like the Internet?

- Energy: the limited resource of the 21st Century
- Needed: Information Age approach to the Machine Age infrastructure
- Lower cost, more incremental deployment, suitable for developing economies
- Enhanced reliability and resilience to wide-area outages, such as after natural disasters
- Packetized Energy?: Discrete units of energy locally generated, stored, and forwarded to where it is needed; enabling a market for energy exchange

New Energy Systems

- A scalable energy network ?
 - Address inefficiencies at all levels of electrical energy distribution
 - Address energy generation and storage
 - IPS and PowerComm Interface
 - Energy sharing marketplace at small, medium, large scale
- Energy Supply on Demand
- Imagine some Test-beds: Smart buildings, datacenters

Some Publications

- <u>O</u>. H. Abdelrahman and E. Gelenbe. Time and energy in teambased search. *Phys. Rev. E*, 87(3):032125, Mar 2013.
- <u>E. Gelenbe. Search in unknown random environments. Phys. Rev. E,</u> 82(6):061112, Dec. 2010.
- E. Gelenbe. Energy packet networks: adaptive energy management for the cloud. Proc. 2nd Inter'l Workshop on Cloud Computing Platforms (CloudCP'12), p. 1–5, Bern, 10 April 2012. ACM.
- Erol Gelenbe. Energy packet networks: smart electricity storage to meet surges in demand. In Proceedings of the 5th International ICST Conference on Simulation Tools and Techniques (SIMUTOOLS'12), p. 1–7, Desenzano del Garda, 19-23 March 2012. ICST.
- E. Gelenbe and C. Morfopoulou. Power savings in packet networks via optimised routing. ACM/Spirnger MONETS, 17(1):152–159, 2012.
- E. Gelenbe and C. Morfopoulou. Gradient optimisation for network power consumption. In First ICST International Conference on Green Communications and Networking (GreenNets 2011), 5-7 Oct 2011.

Publications

- E. Gelenbe and T. Mahmoodi. Distributed Energy-Aware Routing of Traffic. Proc. 26th International Symposium on Computer and Information Sciences (ISCIS'11), London, UK, 26-27 Sep. 2011.
- E. Gelenbe and C. Morfopoulou. A Framework for Energy Aware Routing in Packet Networks. The Computer Journal, 54(6), June 2011.
- E. Gelenbe and T. Mahmoodi. Energy-Aware Routing in the Cognitive Packet Network. International Conf. on Smart Grids, Green Communications, and IT Energy-aware Technologies (Energy 2011), Paper No. Energy_2011_1_20_50090, Venice, I22-27 May 2011.
- E. Gelenbe and C. Morfopoulou. Routing and G-Networks to Optimise Energy and Quality of Service in Packet Networks. Proc. 1st Inter'l ICST Conference on E-Energy, Athens, 14-15 Oct 2010.
- A. Berl, E. Gelenbe, M. di Girolamo, G. Giuliani, H. de Meer, M.-Q. Dang, and K. Pentikousis. <u>Energy-Efficient Cloud Computing</u>. Computer Journal, 53(7), 2010.
- E. Gelenbe and S. Silvestri. Reducing Power Consumption in Wired Networks. In Proc. 24th International Symposium on Computer and Information Sciences (ISCIS'09), 14-16 Sep 2009, IEEE.

http://san.ee.ic.ac.uk