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P Historical perspective

» Induction Motor 1888 > MMC 2003
» Equivalent Circuit > Detail Model
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P ODE Derived from Series Capacitor Modulation

Definition of charge: g = Cv

.y . d
Definition of current; i = d—ct’
dv ac
) 1= CE + @
When C = —=
n(t)
L
. _ Co dv n(t)
Then i = (0 + C,v -
1
Cov% ---switching noise and is neglected.
. Co dv . . . .
[ = — is retained ----signal processing

n(t) dt



P Number of Capacitors commanded by Modulation Signal

Uref,l,n
Udcl,n

1
n(t) = (E - )

[ = Co_ dv is retained --- signal processin
T n(t) dt gnat p g

C, dv

B <1 . Uref,l,n) dt
2 Udcln




P ODE equations

Ure ,n . .
Number of capacitors n(t) = (— — Udfll ) commanded by Modulation signal

du N i di 1
U/,n _ _( ac/,n - n)(_ . reff,n ) diff /,n - [Udc(‘n _ (ZRO + Rdc)idm]n
dt C 2 ans 2 U, dt 2L,
Urefé n
__(uUl,n +uL€,n)+ | ( uen UL n)]
dc/,n
dU N I 1 ure n diac n 1 1
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P Numerical prediction by ODE

Simulation Tests

ODE predictions




P Numerical prediction by ODE

Test: Multi-Terminal MMC HVDC ---- Atlantic Coast of USA

MMC-1 Energy Market MMC-2 DC Voltage Regulator (Power Slack)

MMC-3 Wind Farm

MMC-4 Energy Market
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} Stochastic Wind Control—AC-side of MMC operates as an infinite bus,
requlate voltage magnitude and frequency

» MMC3 P4 to track

stochastic wind power
P Pdc Pac

ac*

» Wind stochasticity is
seen as high frequency
noise in P..

» “Blow-up” in inset
shows P tracking P,
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P Numerical prediction by ODE
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P Numerical prediction by ODE

> Test on reversal of powerby 40 ]
station shown as P;. .
2 5. P1=20MW |
: P2=10MW
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P Numerical prediction by ODE

The preceding “Atlantic coast” tests show that the
ODE formulation can implement control strategies

simulations by both ODE and detail model.
results coincide---very high accuracy.




P Numerical prediction by ODE coincides with Detail Model

Comparison of Detail Model with ODE

Detail Model Simulated by OPAL-RT




P Numerical prediction by ODE coincides with Detail Model

—Pdc_mmcl 1—Pdc_mmcl 2—Pdc_mmc2 [—Pdc_mmc2 2-—Pdc_mmc3 _1—Pdc_mmc3 2—Pdc_mmc4_1
—Pdc mmc4 2

» Results of Detail Model and ODE > Transients from the demanding step
Model coincide so that 8 graphs change test demonstrate high
appear as 4 graphs. accuracy of ODE.
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P Quantitative prediction from algebraic formulas

Prediction by harmonic analysis of ODE:

Algebraic Formulas

From Analytic Continuity

ODE Method succeeds or fails together




P Quantitative prediction from algebraic formulas

Harmonic Decomposition of MMC:
MMC---ideal voltage source equivalents connected in series

Dr. Can Wang
Assistant Professor
Harbin Institute of Technology,
Shenzheng




P Quantitative prediction from algebraic formulas

Harmonic Decomposition of MMC:
MMC---ideal voltage source equivalents connected in series

» Decomposition as ideal voltage
sources of the upper half and the
lower half.

» AC-side representation

» DC-side representation




P Quantitative prediction from algebraic formulas

AC-Side algebraic Voltages
Fundamental and 39 harmonic
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P Quantitative prediction from algebraic formulas

DC-Side algebraic voltages Original sources of
DC and 2" harmonic 2n Harmonic
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P Quantitative prediction from algebraic formulas

» Algebraic formulas give guidance to a Feedforward method to reduce
“circulating current” 3t

O circuitry of feedforward
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P Quantitative prediction from algebraic formulas

» ODE predicts: capacitor of sub-modules can reduce inductive reactance on
AC-Side for power factor correction

Q L, compensated by sub-module capacitors 1 P and Q as function of capacitor size

A Active Power  (Simulated Results)
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P Quantitative prediction from algebraic formulas

» MMC equivalent as series connection of voltage sources:

» MMC-HVDC suitable for series connection on DC-Sides to form ultra MMC-
HVDC
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P Quantitative prediction from algebraic formulas

» Simulation test to demonstrate suitability of Ultra MMC HVDC
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P Quantitative prediction from algebraic formulas

» Simulation of Instantaneous Power Reversal in Ultra-MMC HVDC
(DC voltage equalization control required)
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P Quantitative prediction from algebraic formulas

HVDC Station based on single-phase MMC H-Bridges connected in series

Dr. Quanrui Hao,
Associate Professor,
Shandong University




P Quantitative prediction from algebraic formulas

» Each leg has voltage withstand of U,
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P Quantitative prediction from algebraic formulas

» Reorganize two legs as three-phases of MMC Based on Single-Phase H-
Bridge Modules in Series

ARM . . Uge/2

— Ug/2

Lo

| | UdC/2




P Quantitative prediction from algebraic formulas

Need engineering science

To answer existing puzzles




P Quantitative prediction from algebraic formulas

Why is multi-terminal HVDC is less successful with LCC thyristor technology
(modelled as ideal voltage source on dc side) compared to IGBT-MMC
technology (modelled as ideal voltage source on dc side) ?

Nanao 3-Terminal VSC-HVDC -2013

Canada
§ ‘ qm
E Nanao Power Grid i
sy
H
i
Des Cantons i
i
Comerford
d farms in Nanao Island: By 2011, total capacity is
Massachusetts 2015, offshore 50MW (Tayu).
&ndy Pond VSC-MTDC project in Nanao Island: Three sending converter stations, One receiving
inverter station Voltage +160kV, Capacity 200 MW, Capacity 200 MW, Distance: 20km.

gong




P Quantitative prediction from algebraic formulas

» Algebraic formulas show instantaneous power balance of ac-side ideal
voltage source with dc-side ideal voltage source
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P Quantitative prediction from algebraic formulas

» Power balance of ac-side and dc-side facilitates multi-terminal MMC-HVDC
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P Quantitative prediction from algebraic formulas

» After circulating current is eliminated, algebraic formulas show that MMC
operation can be followed by Phasor Diagrams

jl(XactXo/2)
)

I2(RactRo/2)

Composite Phasor Diagram of MMC

- Power Exchange between
ac-side and dc-side




P Organization of Presentation

Engineering Science

» Nonlinearity of MMC—treatment by
linearization

Engineering Practice
Siemens HVDC PLUS

China State Grid and China South
Grid

Multiple controllability; Increase
Transient Stability Limit and
power transmissiblity

Simulation platforms for planning
studies that can PSSE, Power
Factory, HYPERSIM, OPAL-RT,
RTDS




P Siemens HVDC PLUS
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P China State Grid and China South Grid

» Yunnan----Luxi
+350 kV/1000 MW MMC
Based Back-to-Back VSC-HVDC
Asynchronous Networking Project

AC grid voltage of either units: 500 kV
VSC-HVDC unit :

Two modular multilevel converters (MMCs)
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P China State Grid and China South Grid

> Multi-Terminal MMC-HVDC

O 3-terminal Nan’Ao d 5-terminal Zhoushan
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} Multiple controllability; Increase Transient Stability Limit and power
transmissibility

Researchers

Mr. Haihao Jiang Dr. Can Wang




} Multiple controllability; Increase Transient Stability Limit and power
transmissibility

» Multiple controllability

L Suppression of “Circulating Current”

U Decoupled P-Q control

O Protection against low voltage ride-through due to faults by Individual
Phase Deadbeat

L Protection against overcurrent due to faults by Individual Phase Deadbeat

L Damping of power oscillation




Multiple controllability; Increase Transient Stability Limit and power
transmissibility

» Demonstration of multiple controllability

» Transient stability test in radial transmission line

Bus5

MMC

Transmission Line 1

| —1 ;mﬂm'te
- Bus
CB1 Transmission Line 2 CB2

Turbine  Generator = = +—— Line 2-a — Line2-b |J——¢

A,

Busl Bus2 Bus3 Bus4
\ Fault




} Multiple controllability; Increase Transient Stability Limit and power
transmissibility

» Transient Stability Test Scenario
1. Power transfer from turbine-generator to infinite bus

2. System inertia represented by H of turbine-generator
3. MMC damps swing of turbine-generator
4. 3-phase short circuit fault
5. MMC protected by Deadbeat
6. Circuit-Breakers CB1, CB2 clear fault in Line 2
7. Power transmitted by Line 1
8. MMC damps power oscillation
Bus5
‘ | Transmission Line 1 ] .
D:@ CB1 Transmission Line 2 o
Turbine Generator = = ——] Line 2-a }—F Line 2-b I—CEL - =
Fault

l




Multiple controllability; Increase Transient Stability Limit and power
transmissibility

» Demonstration of dead-beat control
left: voltage at point of common coupling (PCC)
right: ac-current from MMC

—Immc ;_a_en—Immc_b_en—Immc_c_en

i

30 3005 i ; 7 ; ; i ? ; 899 o5 “30 301

MMC laci (A)

Tme( )

Di ya chuan yue Guo liu baohu

L MMIC

Transmission Line 1

| . Infinite
Bus
CBl Transmission Line 2 CB2
Twbine  Generator = ——] Line 2-a Line 2-0 i ]
Busl Bus2 Bus3 Bust
Fault

|




Multiple controllability; Increase Transient Stability Limit and power
transmissibility

» Turbine-Generator Speed

» Active Power from MMC
(System Frequency)
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Multiple controllability; Increase Transient Stability Limit and power
transmissibility

» Damping can raise transient stability limit, raise transmissibility of power

without damping

with damping
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Simulation experiment on power oscillation




} Multiple controllability; Increase Transient Stability Limit and power

transmissibility
—k,=0 —k, =0 — k=0
70 k, =205 140 k=705 : 140, k=05
. 50 it gloo— b %5100
é 30 % 60 7 % 60
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stabilized by damping stabilized by damping increase




Multiple controllability; Increase Transient Stability Limit and power
transmissibility

> Damping can increase power transmissibility by 49% (32 & 49%Th Z {5 %4))

Transient Stability Limit Power Angle Power Transmissibility Gain
Damping Constant

Kk
(ko Transmitted Power(pu) o Per Unit Gain

PLase=800MW (degree) Base Power 0.53x800MW

- 0 0.53 72.85 1
0.58 78.71 1.09
0.63 84.50 1.19
0.69 91.93 1.30
0.78 104.65 1.47
0.78 104.65 1.47
- 06 0.78 104.65 1.47

0.7 0.78 104.65 1.47
08 0.79 106.45 1.49
- 09 0.79 106.45 1.49
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} Simulation platforms for planning studies that can PSSE, Power Factory,
HYPERSIM, OPAL-RT, RTDS

Software for power transmission planning

SILEN

SIEMENS

Ansvers for energy.

DIgSILENT

PowerFactory 2017

What's New




} Simulation platforms for planning studies that can PSSE, Power Factory,
HYPERSIM, OPAL-RT, RTDS

power transmission planning using digital simulation




} Simulation platforms for planning studies for: PSSE, Power Factory,
HYPERSIM, OPAL-RT, RTDS

» Representing MMC in hybrid AC-DC Power Transmission planning
» Simulating Detail model is time intensive
» Each sub-module requires one ODE, there are hundreds of modules
» ODE: Each phase has 4 equations---10 times faster
du, N i

( ac/,n - )(1 ureff,n)
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d Cc 2 2

dcl.n
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} Simulation platforms for planning studies that can PSSE, Power Factory,
HYPERSIM, OPAL-RT, RTDS

» Accuracy test of ODE against detail simulation

Example: circulating current of a, b and ¢ phase of mmc.
no suppression 0.8s <t. suppression enabled: t > 0.8s

0.15—

: . . —— ODE Model
01 | ODE and Detail Model coincide Dot Mo
0.05 — — Detail Mode
<
x 0
5-0.05
-0.1
-0.15
-0.2 | | | |
“0.75 0.8 . 0.85 0.9 0.95
(a) phase A of circulating current of mmc2
ol —— ODE Model
< 0.65 — — Detail Model
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S.0.05
0.1+
-0.15
- \ | | |
0%_75 0.8 0.85 0.9 0.95
(b) phase B of circulating current of mmc2

—— ODE Model
— — Detail Model
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o o
o -
o o
= oo 8 [N
‘ T ‘

202 ! \ \

|
0.75 0.8 . 0.85 0.9 0.95
(c) phase C of circulating current of mmc2




} Simulation platforms for planning studies that can PSSE, Power Factory,
HYPERSIM, OPAL-RT, RTDS

» Represent MMC by ODE in
O POWER FACTORY
Q PSS-E
Q RTDS
O OPAL-RT
O HYPERSIM
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P Nonlinearity of MMC—treatment by linearization

» ODE predicts nonlinearities of MMC

Existence of circulating current and its suppression by feedback.

» ODE are nonlinear equations

Linearization about equilibrium solution yields time varying periodic matrix.

> Result of Linearization

Linearized equation is time varying. Periodic in 50 or 60 Hz supply.




P Nonlinearity of MMC—treatment by linearization

dx
— = f(X,u) defining x=X/y+Ax where X, is the vector of steady-state solution
t —_ — —
dX, dax o(f(x,u) o(f(x,u)
—+—=f(X,,u)+—= X = X
dt dt - — OX OX

X0

!

dax o(f(x,u)
dt O0X

AX = [AD)]AX

Uo

1

[AD]=[4@+D)].




P Nonlinearity of MMC—treatment by linearization

» Linearized Matrix is time varying because U, Is time varying in 50 or 60

Hz.
» Nonlinearity is known as Bi-linear
[A)] =
[ u u A
O O E(E_ ref) l(i_ ref)
C 2 U, 2C 2 U,
u
O O E(l.'. ref) _l(i ref)
C 2 U, 2C 2 U,
u
_L(E_ Ty — 1 (E ) —LZRO 0
2L, 2 U, 2L, 2 U, 2L,
1 1 U, 1 1 U, 1 o
+4%u,) veu ° o ®
\_ dc dc J




P Nonlinearity of MMC—treatment by linearization

Aleksandr Lyapunov Gaston Floquet




P Nonlinearity of MMC—treatment by linearization

Stability: eigenvalues of state-transition matrix lies within unit circle

AX =[A(t)]Ax Form state-transition matrix [®(T,0)]

[ADIFIAT)]

Ax(t) = [®(t,0)]Ax(0)

d[D(t,0)]
dt

= [A@][©(t,0)]




P Nonlinearity of MMC—treatment by linearization

» Liapunov-Floguet Theory yields graphs to choose parameter values for best

damping.

1l
L)
=2
—-
—A

MMC parameters are
CIN, Lye, Loy Raes Ry
Choose the parameter
values with lowest
magnitudes of all
eigenvalues predicted
by Liapunov-Floquet

Theory .



P Nonlinearity of MMC—treatment by linearization

» Liapunov-Floguet Theory yields graphs on damping coefficients as functions
of CIN, L., Ly, Ry R,

O For best damping, the magnitude should be as low as possible.

O The designer chooses parameters such that the largest of the 5 magnitudes is as

small as possible. (Min-Max).
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0.75r
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P Nonlinearity of MMC—treatment by linearization

> Validation of Formulas from Liapunov-Floquet Theory (A ZEHIE )

L Agreement of simulations of time-domain linearized state-variable with Liapunov-Floquet

Theory predictions

Validation of Liapunov-Floquet Theory against simulated transient

Magnitude 0.721 Magnitude 0.172

[=theory 100 —stheory

8 0 T 0
60 —simulation . .
—simulation
40 i 50+ 7
= ﬂ\ VAV 2
;5 ;5 0 \/-g-' —a— —e il

'6%902 0.04 0.06 0.08 01 o2 o2 004 006 008 0.1 0.12
Time(s) Time(s)




P Nonlinearity of MMC—treatment by linearization

» Wrong parameter choice results in forced oscillation

0.95 —E‘igenvaluel
—Eigenvalue2
0.9- —Eigenvalue3
% —Eigenvalue4
30.85- — 1
= — -
g 0.8
2 —_——
0.75F
%42 03 04 05 06 07 08




P Nonlinearity of MMC—treatment by linearization

» Reaching steady-state solution within 1 cycle of supply frequency

O Save waiting time for transients to be damped out

O Applying algorithm of Aprille and Trick

AC Current(A)
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2000

1500

1000

500

-500




P Conclusion

Requirements of coming of age are satisfied.

» Induction Motor 1888
» Equivalent Circuit

R, X X
W P
n Is V|ﬂ ' |r?
III'lr1
2
o
» ODE Equations
| [BeD -k JA —~aglm |
e | |~ E+sl  -—af, rl,
V| |55 (g-o)L, K+s] (g—a)Ly
v, | [Ha-gL, sk, Ag-a) E+s], |

> MMC 2003
> Detail Model

» ODE Equations

duUfn N iac/n H
—=—(—+i_
d Cc 2

1 uref/,,n
No——)
2 U

del.n

at 2L




} Coming of Age requirements are satisfied

Engineering Science

» Numerical prediction by ODE
coincides with Detail Model

» Quantitative prediction from algebraic
formulas

» Nonlinearity of MMC—treatment by
linearization

Engineering Practice
Siemens HVDC PLUS

China State Grid and China South
Grid

Multiple controllability; Increase
Transient Stability Limit and
power transmissiblity

Simulation platforms for planning
studies that can PSSE, Power
Factory, HYPERSIM, OPAL-RT,
RTDS




Thank you

For your patience

IEEE POWER

- ELECTRONICS SOCIETY
A Powering a Sustainable Future



