Introduction to Signal Integrity

Module 1

Outline

- Fundamentals (Systems, Signals, Electromagnetism).
- Theory and Applications go hand by hand.
- Learn by doing (gradually build complex systems).
- Animations and Equipment.
- Debugging and Troubleshooting Skills.
- Collaborative learning (learning circles, discussions).

Logistics, timelines

- Six 90 mins classes run on every other Monday (from noon to 1:30 PM).
- Lunch provided.
- A mix between Teaching Modules (TM) and Interactive Modules (IM).
- Collaborative learning highly encouraged.
- Virtual Office hours (Mondays (no classes) from noon to 1 PM.
- Certificate Requirements:
 - $_{\odot}$ Attend at least 80% of the class.
 - $_{\odot}$ Participate in the IM.
 - $\ensuremath{\circ}$ Complete the assignments.

Assignments

- Three (or Four) short assignments
 - $_{\odot}$ Each assignment builds on previous ones.
 - $_{\odot}$ Should take between 30 mins and 1 hour to complete.
 - Exploration Questionnaire (1st attempt before September 23, final attempt before November 25).

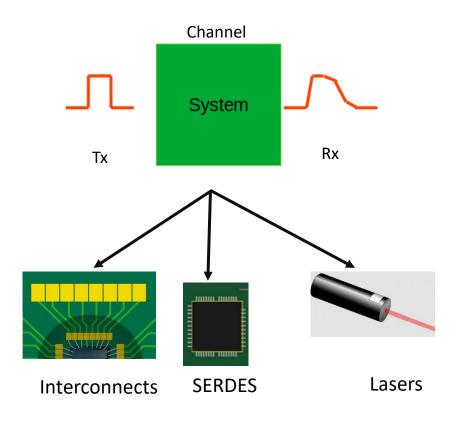
Purpose

- $_{\odot}$ Learn by doing.
- $_{\odot}$ Emphasize the Fundamentals.
- $_{\odot}$ Bridge fundamentals with applications.
- Mandatory for getting the certificate.
- Programming Languages: Octave, MATLAB, Python or any language of your choice.

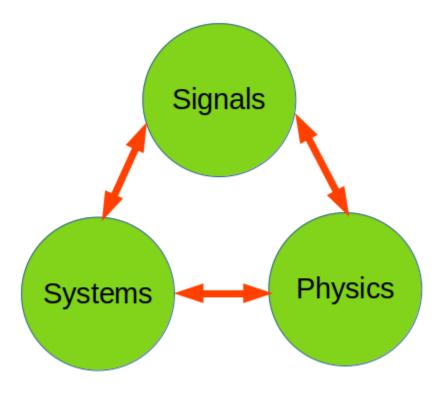
Course Objective

"Bridge the gap between theory and engineering practices in SI"

Challenges


- Wide range of experiences and expectations.
- SI is viewed differently (Circuit Designers, PCB designers, System architects, etc).
- Time limitations.
- Balance between theory and applications.

Workflow conceptual view


- Need to define Signal Integrity first:
 - ChatGPT definition: "Signal Integrity (SI) refers to the measure of the quality and reliability of an electrical (a communication) signal as it travels through a transmission medium"

SI Conceptual View

Module 2

SI around us

Please try to solve as a group the following:

- Mitel is a local telecommunications company founded in 1973, what does "Mitel" mean?
 - a. Multimedia Telecommunications
 - b. Michael & Terry Lawnmower
 - c. Microsoft Telcom.

Tell us something interesting about the company

- Explain using SI concepts why we tend to raise our voices while talking behind doors.
- Identify SI systems in the room. What do you think the data rate is and what issues you think may affect the signal and how to quickly fix them?

Module 3

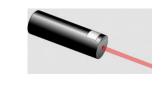
Introduction to Systems

- Data rates double every few years (100 Gbps, 200 Gbps, 400 Gbps).
- Pulses are picoseconds long, i.e., interaction with systems becomes complex.
- Need to describe and characterize systems
 - ${\rm \circ}$ Physics based characterization
 - Analytical models fit (Optical modulators, Diodes, SERDES, etc.).
 - Physics based Solvers (EM, Heat transfer, mechanical, Photonics, Semiconductors).
 - Behavioral Models
 - Input output characteristics (S parameters)
 - IBIS-AMI (DLL/SO Algorithmic models).

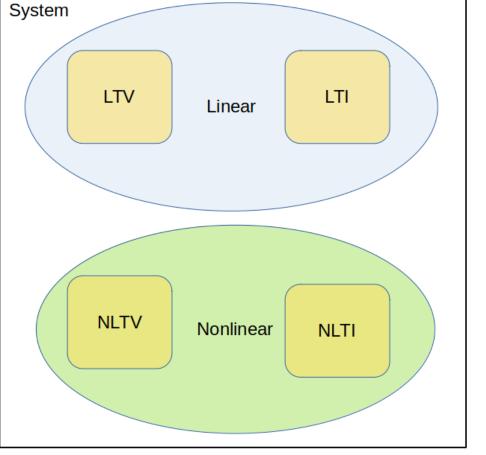
Time delay of light over 1 m (arm distance) is:

System Types

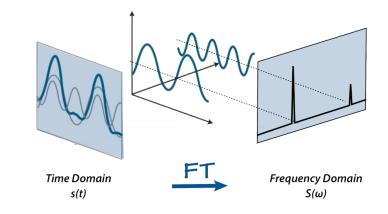
- Linear systems satisfy Superposition principle:
 - Response to two inputs =Sum of responses of each 0 input.
 - Output is proportional to input amplitude.
- Nonlinear: does not satisfy superposition principle.
- Time variant: Parameters change with time.


LTI

Time invariant: Parameters constant over time.

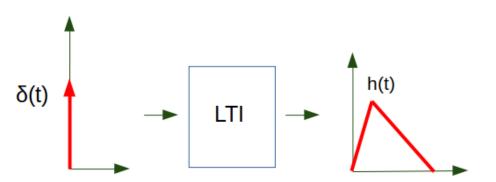


NLTI



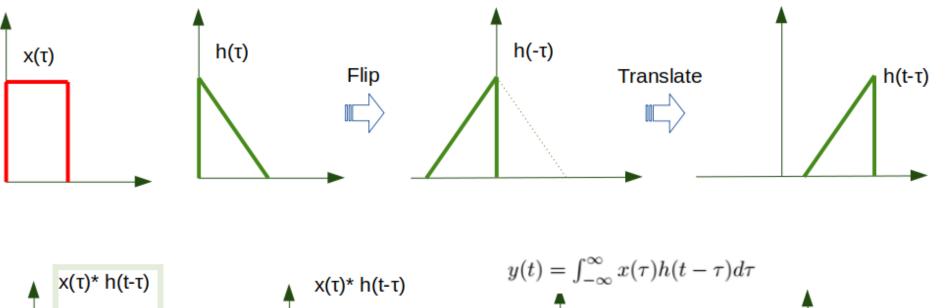
Linear Time Invariant Systems

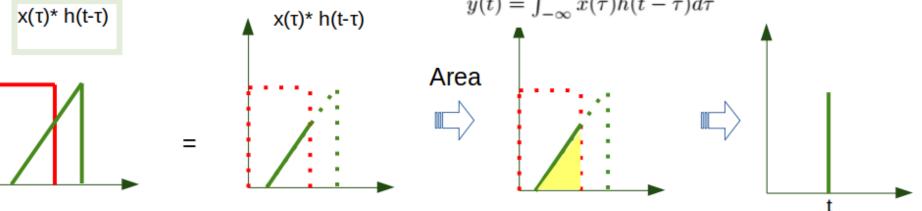
- Many SI blocks are LTI (Cables, PCB traces, connectors, Packages, FIR filters, CTLEs).
- (Relatively) Easy to model
 - Time/Frequency domains.
 - Fitting to rational functions.
- Fast calculations
 - Efficient Frequency domain computations.
 - o Interaction is equivalent to direct multiplication.
- Cannot model Lasers, modulators, Limiting amplifiers, DFEs, etc
 Good first order approximations.
- · Measurements are straightforward.



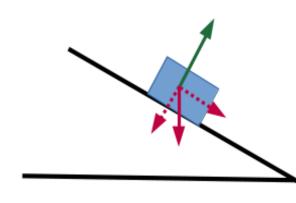
LTI description

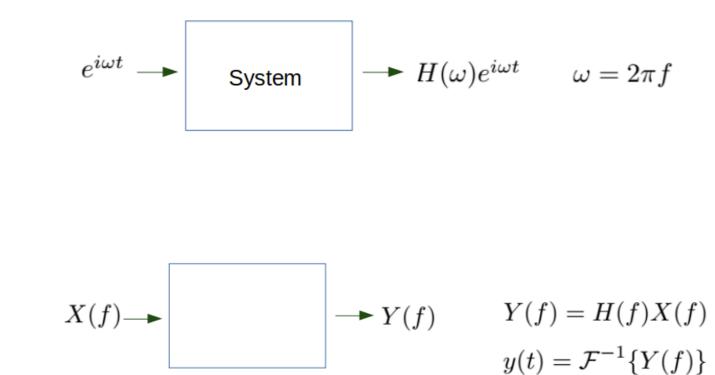
- Combine Linearity and Time invariance, LTI described by its impulse response h(t)
- For any input the output calculated using the convolution operation.
- In the frequency domain, the impulse response becomes the transfer function.




Linearity + Time invariance
$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$
 Convolution

Convolution





From time to frequency

 Convolution becomes multiplication why?

- Lesson from mechanics: select the coordinate system that is natural to the problem.
- For LTI the "natural coordinate system" is the sinusoids!

Module 4

Explore as a Group

Topic 1	Topic 2	Topic 3	Topic 4
Challenges with NLTI Systems Modelling	Simulation speed of NLTI vs LTI	Sketch a full system from transmitter to receiver (Does not have to be complete, just do your best)	How LTI systems are measured (frequency or time domain)?

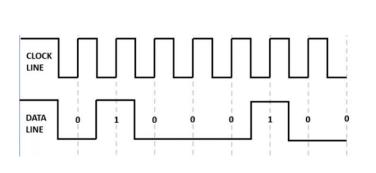
Module 5

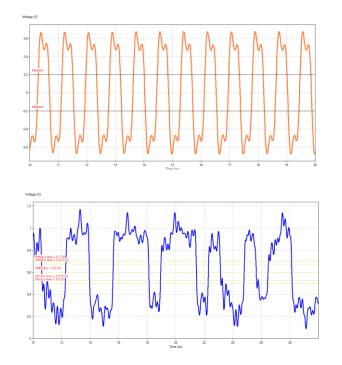
Signal Integrity Metrics – Time Vs. Frequency

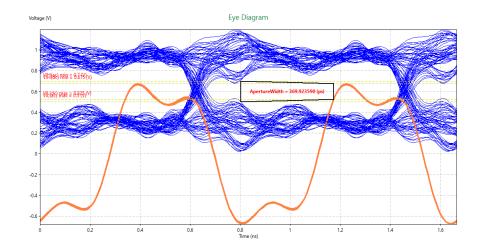
Signals = 50 Ohms Characteristic Impedance, Bandwidth of a low frequency to Daylight for digital, Transport information Powers = 0 Ohms Impedance, Bandwidth ~ 500 MHz on PCB, support the transfer

22

Domain	Results	V ₁ PORT V ₁ NETWOR	
Frequency	S-Parameters -> Insertion Loss, Return loss	A general two-port network w Z parameters $V_1 = Z_{11} \cdot I_1 + Z_{12} \cdot I_2$ $V_2 = Z_{21} \cdot I_1 + Z_{22} \cdot I_2$,	with voltages and currents defined. ABCD parameters $V_1 = A \cdot V_2 - B \cdot I_2$ $I_1 = C \cdot V_2 - D \cdot I_2$,
Time	Waveforms and Eye Diagrams	Y parameters $I_1 = Y_{11} \cdot V_1 + Y_{12} \cdot V_2$ $I_2 = Y_{21} \cdot V_1 + Y_{22} \cdot V_2,$	S parameters $b_1 = S_{11} \cdot a_1 + S_{12} \cdot a_2$ $b_2 = S_{21} \cdot a_1 + S_{22} \cdot a_2,$

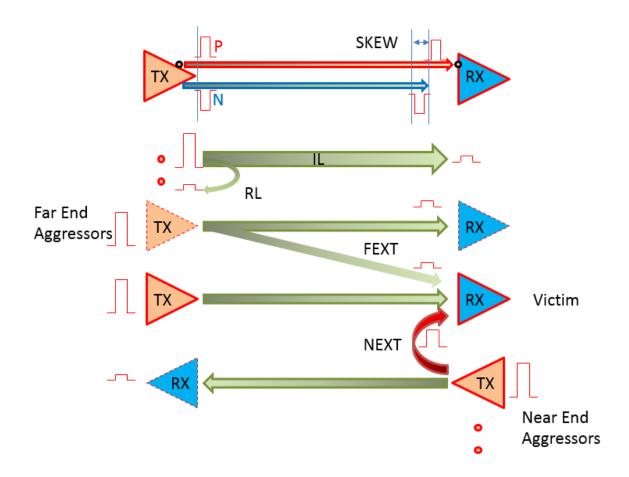


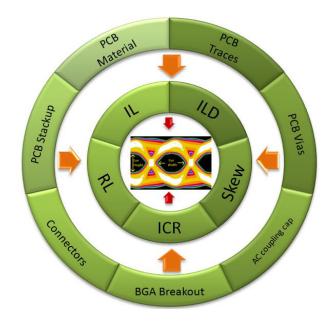



and currents defined.

Time Domain Metrics

RX waveform should look like an amplitude scaled Tx waveform. Metrics define departure from ideal values. Jitter, Overshoot/undershoot, Eye width and height,



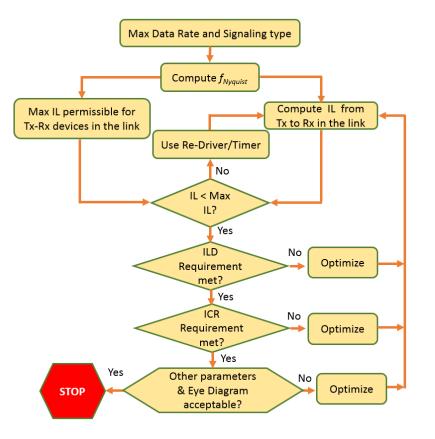


Frequency Domain Metrics – S Parameters

IL- Insertion Loss, RL- Return Loss, ILD-Insertion Loss Deviation,
FEXT – Far end crosstalk, NEXT –Near end crosstalk,
ICR – Insertion loss to crosstalk ratio

Standards

Standard Name	DDR4	GDDR7	PCI-Express Gen4	PCI-Express Gen7
	I THE ATTE			
Data Rate (Gbps)	3.2	36	16	128
Signal Type	NRZ	PAM3	NRZ	PAM4
Insertion Loss (dB)	Not specified		25.5	
Return Loss (dB)	Not specified		Mask defined -6dB at 8GHz	
Receiver Eye Height (mV)	Very detailed (~100 mV)		15	
Receiver Eye Width (pS)	Very detailed (~100 pS)		6.25	



Link Budget

	Example: Nyquist Frequency = 8 GHz		
Link Element	Insertion Loss at (dB)	Return Loss (dB)	Cross talk (dB)
Tx Package	1	30	40
TX PCB Interconnect	3	20	35
Tx Connector	1	20	30
Cable	10	20	25
Rx Connector	1	20	39
RX PCB Interconnect	3	20	30
Rx Package	1	30	40
Total	2 = 20	X	X

References

1. Eric Bogatin, "Signal Integrity Simplified",

Signal Integrity - Simplified: Bogatin, Eric: 9780130669469: Books - Amazon.ca

Module 6

Reflect on what we discussed today (5mins)

• Discuss with your Seatmate.

Takeaways Points

- Course Logistics.
- Course Overview.
- Three main components of SI: Signals, Systems and Physics.
- Types of Systems: Linear, Nonlinear.
- Importance of LTI
 - $_{\odot}$ Many SI systems are LTI.
 - $_{\odot}$ Mature analytical and numerical tools.
 - $_{\odot}$ Easy to characterize via measurement.

IEEE MTT-S

What is IEEE MTT-S?

•The **Microwave Theory and Techniques Technology Society** (MTT-S) is an IEEE society that focuses on advancing the fields of microwave theory, techniques, and applications.

•It serves as a global community for professionals in **RF**, **microwave**, **millimeter-wave**, and **terahertz technologies**.

Benefits of Joining MTT-S:

1.Access to Leading Publications: *IEEE Transactions on Microwave Theory and Techniques, IEEE Microwave Magazine,...* **2.Professional Development & Networking**

- 1. Access to a global network of microwave professionals and experts.
- 2. Mentorship opportunities and technical conferences, including <u>IMS</u> (International Microwave Symposium).

3.Educational Resources

- 1. Exclusive webinars, tutorials, and workshops.
- 2. Special interest groups for students, young professionals, and women in microwaves.

4. Discounts on Conferences & Workshops

1. Reduced rates for IEEE-sponsored conferences, courses, workshops, and symposiums such as IMS.

5.Career Advancement

- 1. Leadership opportunities within the society.
- 2. Recognition through awards and scholarships.

Get Involved! Learn more about MTT-S membership at: MTT-S Website

