Signal Integrity Course Syllabus

- 1. Frequency and time domain signals: Application to high-speed communication (224G/448G)
 - a. Continuous Fourier transform
 - b. FFT as computational tool
 - c. Important parameters and their effects on conversion (implications on high-speed)
 - i. Max frequency
 - ii. Resolution frequency
 - iii. Missing DC point
 - d. Duality of time and frequency domains uncertainty
 - e. Frequency domain importance in high-speed comm: LTI, filters, equalizers
 - f. Power Parseval's theorem
 - g. Random signals (PSD and autocorrelation)
 - h. NRZ, PAM4 (freq and time representation)
- 2. Network parameters and application to broadband applications
 - a. Common parameters (Z, Y, ABCD, S)
 - b. 2-port network
 - c. Response (freq and time, MIMO)
 - d. Physical meaning of S-parameters and Z0
 - e. Fundamentals of transmission line theory
 - f. S-parameters in time domain
 - g. Cascade of S-parameters
 - h. Principles of de-embedding
 - i. TDR and impulse response
 - j. Mixed mode vs single ended
- 3. Fundamentals of EM and applications to package and pcb
 - a. EM
 - b. Material electrical properties Dk& conductivity ...wide band, roughness, temperature
 - c. Numerical solvers (freq and time)
 - d. Eigen value problem \rightarrow wave equation "application to interconnect"
- 4. Use of EM solver in PKG/PCB modeling
 - a. Practical considerations
 - b. Mesh, convergence
 - c. What do we look for?
 - d. Application to 3D packaging
- 5. Freq/time domain applications for high speed measurements
 - a. Calibration
 - b. Main parameters
 - c. Post processing measurements
- 6. Introduction to system sims
 - a. Modelling TX and RX
 - b. Modelling interconnects
 - c. Adding passives
 - d. Post processing (pulse response , eye,...)
 - e. Demo
 - f. IBIS-AMI