SIGNAL INTEGRITY AND POWER INTEGRITY:

CHALLENGES AND TEST SOLUTIONS

ROHDE&SCHWARZ

Make ideas real

INDUSTRY TRENDS AND TECHNICAL CHALLENGES EVOLUTION OF KEY TECHNOLOGIES FOR DATA CENTERS

PCIe: Processing, Storage

IEEE 802.3: Datacom

PCIe Spec.	Raw BW (per lane)	Modulation NRZ / PAM	Symbol Rate (per lane)	IEEE Spec.	Raw BW (per lane)	Modulation NRZ / PAM	Symbol Rate (per lane)
PCIe 4.0: for 16.0 GT/s	16.0 Gbps	NRZ	16.0 GBd	802.3bj/by	25.78125 Gb/s	NRZ	25.78125 GBd
PCIe 5.0 for 32.0 GT/s	32.0 Gbps	NRZ	32.0 GBd	802.3cd	53.125 Gb/s	PAM4	26.5625 GBd
PCIe 6.0 for 64 GT/s	64.0 Gbps	PAM4	32.0 GBd	802.3ck	106.25 Gb/s	PAM4	53.125 GBd
PCIe 7.0 for 128 GT/s				802.3dj			

used cable formats: x1, x2, x4, x8, x16

used cable formats: CR1, CR2, CR4, CR8, CR16

GENERAL SIGNAL INTEGRITY CHALLENGES: CROSSTALK IN SYSTEMS WITH PAM 4 VS NRZ

TRANSMISSION CHANNEL AND VALIDATION CHALLENGES ELECTRICAL INTERFACES

TRANSMISSION CHANNEL AND VALIDATION CHALLENGES OPTICAL INTERFACES

CHALLENGE 1: CHARACTERIZING AND DE-EMBEDDING THE MEASUREMENT PATH TO THE SOC

CHALLENGE 1: CHARACTERIZING AND DE-EMBEDDING THE MEASUREMENT PATH TO THE SOC

Challenge:

- measurement parameters required at BGA interface
- measurement path to DUT needs to be characterized for de-embedding in
 - Oscilloscope: Tx validation
 - BERT / AWG: Rx validation
 - VNA: RL measurement

Solution:

- test fixture characterization and de-embedding
- DC extrapolation (for scopes, BERTs / AWGs)

CHALLENGE 1: CHARACTERIZING AND DE-EMBEDDING THE MEASUREMENT PATH TO THE SOC

Method 1: Measurement with SOC

step 1: 4-port measurement of reference structure (i.e. 2x-Thru)

step 2: 2-port measurement of total structure

step 3: S-parameter model of lead-in incl. DC extrapolation

CHALLENGE 1: CHARACTERIZING AND DE-EMBEDDING THE MEASUREMENT PATH TO THE SOC

Method 2: Measurement without SOC

step 1: 2-port measurement of reference structure (i.e. 1x-Open & 1x-Short)

step 2: 4-port measurement of total structure

step 3: S-parameter model of lead-in incl. DC extrapolation

ACCURATE TEST FIXTURE MODELING AND DE-EMBEDDING: HOW IT WORKS – IMPEDANCE CORRECTED DE-EMBEDDING

ACCURATELY MODELLING AND DE-EMBEDDING OF DIFFERENTIAL PROBES: HOW FAR TO DE-EMBED?

How far do we need to de-embed?

- discontinuity at the probe tips is **not** part of the differential signal structure
- de-embedding has to be done past this discontinuity and slightly into the differential signal structure
- impedance corrected de-embedding to correctly model the probe and contact point discontinuity as it is on the board.

Limitation of factory-made de-embedding files

recommendation to characterize and de-embed on the actual structure

ACCURATELY MODELLING AND DE-EMBEDDING OF DIFFERENTIAL PROBES: CONCLUSION

Workflow of Impedance Corrected De-embedding:

- calibration up to the coaxial interface of the VNA setup
- characterization and de-embedding of the probe:
 - total structure
 - de-embedding reference structures:
 - 2x-Thru or
 - 1x-Open & 1x-Short or 1x-Short only with flight time scaling (move past discontinuity of probe contact point)
 - impedance correction required to correctly model probe contact discontinuity and shift reference plane into actual signal structure

Total Structure Fixture – DUT – Fixture

R&S DE-EMBEDDING ASSISTANT: ZNA, ZNB / ZNBT WORKFLOW WITH IMPEDANCE CORRECTION

R&S De-embedding Assistant with Impedance Correction: Example ZNx-K220

Step 1: select topology

- DUT
- lead-in
- lead-out

Step 2: measurements

- coupon(s)
- total structure

Step 3:

apply

CHALLENGE 2: CHARACTERIZING A TRANSMISSION CHANNEL BETWEEN 2 CHIPS / CHIPLETS

SIGNAL INTEGRITY CHALLENGES IN HIGH-SPEED CHANNELS EXAMPLE: PCIE 5.0 AND 6.0

▶ impedance mismatches: discontinuities at packages, vias and connectors

Example: PCIe 5.0 and 6.0 discontinuities on signal path between Root Complex and End Point

SIGNAL INTEGRITY CHALLENGES IN HIGH-SPEED CHANNELS EXAMPLE: PCIE 5.0 AND 6.0

Iosses and frequency response of PCB material Short Longer Example: PCIe 5.0 and 6.0 Channel Channel PCle 5.0 PCle 6.0 Loss Parameters Rev 1.0 (dB) Rev 1.0 (dB) total loss budget @ 16GHz Pad-to-Pad Loss at 16 GHz -36 -32 Add In Card End Point requires PCB loss of Root Complex (RC) -9.0 -8.0 \leq 1.0 dB / inch Add-in-Card (AIC) -9.5 -8.5 System -17.5 -15.5 Retimer trend: PCB signal traces getting by-passed by cables (lower loss) Root Complex Connector AC Cap

Baseboard routing

SIGNAL INTEGRITY CHALLENGES IN HIGH-SPEED CHANNELS EXAMPLE: PCIE 5.0 AND 6.0

- ► crosstalk:
 - near end crosstalk: NEXT
 - far end crosstalk: FEXT
- multiple aggressors: power sum
 - power sum NEXT: PSNEXT or multi-disturber NEXT: MDNEXT
 - power sum FEXT: PSFEXT or multi-disturber FEXT: MDFEXT

TEST PARAMETERS IN PCIE 5.0 / 6.0 EXAMPLE: PCIe 5.0 / 6.0 INTERNAL AND EXTERNAL CABLES

Parameters according to PCIe Specification:

- ► Differential Insertion Loss (Sdd21): mask check against IL limit mask
- Differential Return Loss (Sdd11 and Sdd22): mask check against RL limit mask iRL metric: method of waiver, if RL violates limit mask
- NEXT and PSNEXT (power sum of individual NEXT aggressors): mask check against PSNEXT limit mask

ccICN_{NEXT} metric: method of waiver, if PSNEXT violates limit mask

- FEXT and PSFEXT (power sum of individual FEXT aggressors): mask check against PSFEXT limit mask ccICN_{FEXT} metric: method of waiver, if PSFEXT violates limit mask
- ► Intra-Pair Skew EIPS (Effective Intra-Pair Skew): limit check
- ► Inter-Pair Skew (Lane-to-Lane Skew): limit check

Beyond Specification:

▶ ...

Differential Trace Impedance Profile

REFERENCE PLANE DEFINITION IN PCIe EXAMPLE: PCIe 5.0 / 6.0 INTERNAL AND EXTERNAL CABLES

Source: PCI-SIG Electrical Work Group (EWG): PCIe 5.0/6.0 External Cable Specification (in progress)

TEST PARAMETERS IN IEEE 802.3ck EXAMPLE: 802.3ck COPPER CABLE ASSEMBLIES (CR)

Parameters according to IEEE Specification:

- Differential Insertion Loss (Sdd21): mask check against ILdd limit mask
- ► Differential-Mode to Common-Mode Return Loss (Scd11 and Scd22): mask check against RLcd limit mask
- Differential-Mode to Common-Mode Insertion Loss (Scd21) minus Differential Insertion Loss (Sdd21): mask check against ILcd-ILdd limit mask
- Common-Mode to Common-Mode Return Loss (Scc11 and Scc22): mask check against RLcc limit mask
- Metrices:

▶ ...

- Channel Operating Margin (COM)
- for cable assemblies with COM < 4dB: Effective Return Loss (ERL)

Beyond Specification:

Differential Trace Impedance Profile

REFERENCE PLANE DEFINITION IN IEEE 802.3 EXAMPLE: 802.3ck COPPER CABLE ASSEMBLIES (CR)

Source: IEEE Std 802.3bj-2014

VERIFICATION OF PCIE 5.0 / 6.0 CABLES AND CONNECTORS: GENERAL CONSIDERATIONS

Measurements:

automation with switch matrix: example for PCIe x8

	PCle x4	PCle x8	PCle x16
umber of lanes (Tx + Rx)	8	16	32
umber of ports for full testing all lanes and all crosstalk combinations)	32	64	128
umber of 4-port measurements for full esting all lanes and all crosstalk combinations)	8 x THRU 4 x 4 = 16 x NEXT_L 4 x 4 = 16 x NEXT_R 3 x 4 = 12 x FEXT_L 3 x 4 = 12 x FEXT_R total: 64 4-port meas.	16 x THRU 8 x 8 = 64 x NEXT_L 8 x 8 = 64 x NEXT_R 7 x 8 = 56 x FEXT_L 7 x 8 = 56 x FEXT_R total: 256 4-port meas.	32 x THRU 16 x 16 = 256 x NEXT_L 16 x 16 = 256 x NEXT_R 15 x 16 = 240 x FEXT_L 15 x 16 = 240 x FEXT_R total: 1024 4-port meas.

VERIFICATION OF PCIE 5.0 / 6.0 CABLES AND CONNECTORS: GENERAL CONSIDERATIONS

Calibration:

automation of calibration example for PCIe x4 w. R&S ZNrun

	PCle x4	PCIe x8	PCle x16
number of lanes (Tx + Rx)	8	16	32
number of ports for full testing (all lanes and all crosstalk combinations)	32	64	128
number of 4-port measurements for full testing (all lanes and all crosstalk combinations)	64 4-port groups:	256 4-port groups:	1024 4-port groups:
standard calibration (3 connections per 4-port)	64 x 3 = 192	256 x 3 = 768	1024 x 3 = 3072
optimized calibration	31	63	127
Tx0 Tx1 Tx2 Tx3 Tx3 Test Fixture Left Rx1 Rx2 Rx3	NEXT_RxL0_ THRU_RXL0_TXR EXT_RXL0_TXR1	Tx _L 0 Test Fixture Right	Rx0 Rx1 Rx2 Rx3 Tx0 Tx1 Tx1 Tx2 Tx3

VERIFICATION OF PCIE 5.0 / 6.0 CABLES AND CONNECTORS: TEST AUTOMATION W. ZNRUN-K440

Cable Test

Test Cases

Mode

1. Setup

Master Project —						Cable Test	- Deembedding	of Logical Ports via T	ouchstone File	
C:\				~	Browse	Test Cases	Logical Port	▼ Usage	▼ Touchstone File	٦
Gen5-GenZ1C_Samtec	Fixture-ZNB43-OSP320-64port				~	De (Embedding	PETOL	Deembedding	C:\left_DUT.s4p	×
						De-/Embedding	PETOR	Deembedding	C:\right_DUT.s4p	
Supported Commu	Inication Standard	Link Conc.	d Could Date				PET1L	Deembedding	C:\left_DUT.s4p	
Specification		[Gb/s]	Gbaud/s]	ledium Type 1	TX Lanes		PET1R	Deembedding	C:\right_DUT.s4p	
Gen-Z SFF 8201 2.5-Incl	h with Gen-Z Scalable Connector	Specification 128	32 Ga	able 4	1		PET2L	Deembedding	C:\Jeft_DUT.s4p	
Test Station							PET2R	Deembedding	C:\right_DUT.s4p	
Device	Туре	Test Ports	Communication Channel	Resource			PET3L	Deembedding	C:\left_DUT.s4p	
VNA	ZNB	4	VISA	TCPIP::192.168.1	.1		PET3R	Deembedding	C:\right_DUT.s4p	
Matrix	OSP320-1-16nc	16	VNA_CONTROLLED_VIA_LAN	192.168.1.100			PEROL	Deembedding	C:\left_DUT.s4p	
Matrix	OSP320-1-16nc	16	VNA_CONTROLLED_VIA_LAN	192.168.1.101			PEROR	Deembedding	C:\right_DUT.s4p	
Matrix	OSP320-1-16nc	16	VNA_CONTROLLED_VIA_LAN	192.168.1.102			PER1L	Deembedding	C:\left_DUT.s4p	
Matrix	OSP320-1-16nc	16	VNA_CONTROLLED_VIA_LAN	192.168.1.103			PER1R	Deembedding	C:\right_DUT.s4p	
CalibrationUnit	ZN_Z55		VNA_CONTROLLED_VIA_USB	any			PER2L	Deembedding	C:\left_DUT.s4p	
							PER2R	Deembedding	C:\right_DUT.s4p	
							PER3L	Deembedding	C:\left_DUT.s4p	
							PER3R	Deembedding	C:\right_DUT.s4p	
Message Log							Message Log			
Type T Message						τ	Type ▼ Messag	e		

VERIFICATION OF PCIE 5.0 / 6.0 CABLES AND CONNECTORS: TEST AUTOMATION W. ZNRUN-K440

2. Calibration

VERIFICATION OF PCIE 5.0 / 6.0 CABLES AND CONNECTORS: TEST AUTOMATION W. ZNRUN-K440

3. Measurement incl. Workbench Editor

ZNrun Cable Test Client - Gen5-GenZ1C_S	amtec_Fixture-ZNB43-09	P320-64port		- 🗆 ×
	Setup	Calibrate	Measure	
Massurament		Evaluation		
-		^		Start
DDIL / DDRL		RX Port State Result	Duration	
TESTO THRU L1 TXOL L2 TXOR				Abort
	_			
TEST1_THRU_L1_TX1L_L2_TX1R	12			View Connection Plan
TEST2_THRU_L1_TX2L_L2_TX2R				
				View Evaluation Report
TEST3_THRU_L1_TX3L_L2_TX3R				
TEST4_THRU_L1_RX0R_L2_RX0L				
TECTS TUBLES BYID IN BYID				
TESTS_THRO_LT_RATE_L2_RATE	E.K			
TEST6_THRU_L1_RX2R_L2_RX2L				
TEST7 THRU I 1 RY3R 12 RY3I	B			
DDNEXT_L				
TECTO NEXT 11 TYOU 12 BYON	P			
TESTO_NEXT_LT_TAOL_L2_NAOL				
TEST9_NEXT_L1_TX0L_L2_RX1L				
TEST10 NEXT L1 TX1L L2 RX0L	D			
	-			
TEST11_NEXT_L1_TX1L_L2_RX1L	12			
TEST12_NEXT_L1_TX1L_L2_RX2L				
TEST12 NEVT 11 TV21 12 RV11	P			
		×		
Message Log				
Type T Message				т
.yp meange				· · · · ·

VERIFICATION OF PCIE 5.0 / 6.0 CABLES AND CONNECTORS: TEST AUTOMATION W. ZNRUN-K440

4. Test Report

Gen-Z Scalable Connector

Specification

ROHDE&SCHWARZ	36) - (
Make ideas real	\checkmark						
Nrun Cable Test							
Measurement Results (S-Parameters)	Evaluation Results (iRL, cclCNNEXT, cclCNFEXT) Overall Result						
PASS		P	ASS	PASS			
upported Communication	n Standard						
Supported Communication Specification	Link Speed	Symbol Rate	Medium Type	TX Lanes			

128

32

Cable

4

FURTHER METHODS: EXAMPLE FOR PCIE 6.0 - CHANNEL SIMULATION W. SEASIM

Source: PCI-SIG DevCon 2023

CHALLENGE 3: MEASURING TRUE PHASE NOISE AND JITTER IN HIGH-SPEED DIGITAL DESIGNS

RJ MEASUREMENT IN TIME DOMAIN: OSCILLOSCOPE Positions

- TIE Jitter Measurement:
 - Track
 - Historgram

 $j_{TIE}(n) = \left(t_n - t_{REE_n}\right)$

- Spectrum

- Sampled Measurement (e.g. rising edge)
 - \rightarrow sampling with clock frequency
 - \rightarrow TIE litter spectrum shows aliasing products (Nyquist frequency)
- Reference: t_{REF}
 - → calculation based on ideal signal or selected CDR
 - \rightarrow TIE result includes effect of CDR Transfer Function (HP Filter)
- Pattern Types: all, but RJ best extracted with clock-like 1010 signal
- Limitation by Scope Jitter Measurement Floor **High Sensitivity on Signal Slew Rate**

 $\sqrt{(Noise / SlewRate)^2 + (Intrinsic]itter)^2}$

RJ MEASUREMENT IN FREQUENCY DOMAIN: PHASE NOISE ANALYZER **Ideal Signal** $V(t) = A_0 \sin \omega_0 t$

- Phase Noise Measurement:
 - Phase Noise
 - Phase Jitter
 - \rightarrow integrate phase noise in offset-range
 - \rightarrow divide by clock-frequency ω_0
- Continuous Measurement
 - \rightarrow phase noise spectrum shows no aliasing products
 - \rightarrow for comparability with TIE jitter measurement: measurement to high offsets + folding into Nyquist
- Reference: Ideal Signal
 - → result does not include effect of CDR Transfer Function (HP Filter)
 - \rightarrow for comparability with TIE jitter measurement: apply CDR weighting
- Pattern Types: requiring alternating 1010 signal, results for RJ and PJ
- Made for Phase Noise Testing: → Outstanding Phase Noise / Jitter Performance

Where: A_n = nominal amplitude ω_0 = nominal frequency

Real-world Signal

E(t) = random amplitude changes $\Phi(t)$ = random phase changes

Time domain

RJ MEASUREMENT IN FREQUENCY DOMAIN: PHASE NOISE ANALYZER

FSWP Architecture

Signal Path Ref ADC Chan. 1 1.I → f_{ADC}1 101 f_{ADC}1 Synth Chan. 1 ADC Q1 1,Q → LO 1 **FPGA** PC f_{ADC}1 RF In ATTEN ADC 12 2,I Ref Chan. 2 f_{ADC}2 → f_{ADC}2 Q2 ADC Synth 2,Q Chan. 2 → LO 2 f_{ADC}2

FSWP Signal Processing

Digital Demodulation

PHASE NOISE AND JITTER MEASUREMENT: SETUP FOR ULTRA-LOW JITTER REFCLKs

PHASE NOISE AND JITTER MEASUREMENT: SETUPS FOR ULTRA-LOW JITTER SOCS

Setup 1: below 50 GHz

PHASE NOISE AND JITTER MEASUREMENT: EXPERIMENT FOR PCIE 7.0

Signal level @ FSWP: -16 dBm

- 400 mVpp at die → -4 dBm
- 12 dB attenuation from die via package to test equipment → -16 dBm

R&S SMA100B: quasi-ideal PCIe 7.0 signal source

- 32 GHz
- ultra-low phase noise
- ultra-low wideband noise

R&S FSWP

- phase noise and RJ measurement

PHASE NOISE AND JITTER MEASUREMENT: EXPERIMENT FOR PCIE 7.0

Measurement:

 phase noise measurement to 18 GHz offset

PHASE NOISE AND JITTER MEASUREMENT: SETUPS FOR ULTRA-LOW JITTER SOCS

Setup 2: above 50 GHz

Signal Integrity and Power Integrity: Challenges and Test Solutions

PHASE NOISE AND JITTER MEASUREMENT: ULTRA-LOW JITTER PLLS

Models		Frequency range	1dB compression	Conversion loss	RF port	LO harmonic number
	FS-Z60 Order number 1048.0171.02	40 GHz – 60 GHz	0 dBm	15 dB	WR19	4
	FS-Z75 Order number 3838 2240.02	50 GHz – 75 GHz	-5 dBm	20 dB	WR15	6
	FS-290 Order number 3638.2270.02	60 GHz – 90 GHz	-6 dBm	16 dB	WR12	6
	FS-Z110 Order number 3638.2292.02	75 GHz – 110 GHz	-6 dBm	23 dB	WR10	8
	FS-Z140 Order number 3622.0708.02	90 GHz – 140 GHz	-3 dBm	28 dB	WR08	10
	FS-Z170 Order number 3622.0714.02	110 GHz – 170 GHz	-3 dBm	30 dB	WR06	12
	FS-2220 Order number 3593.3250.02	140 GHz – 220 GHz	-5 dBm	32 dB	WR5.1	16
	FS-Z325 Order number 3593.3267.02	220 GHz – 325 GHz	-5 dBm	40 dB	WR3.4	18

S 4

Rohde & Schwarz 06.02.2024 S

Signal Integrity and Power Integrity: Challenges and Test Solutions

PHASE NOISE AND JITTER MEASUREMENT: EXPERIMENT FOR 224 GBPS SERDES

- 400 mVpp at die → -4 dBm
- 16 dB attenuation from die via package to WG splitter input → -20 dBm

R&S FSWP

- phase noise and RJ measurement

R&S SMA100B: quasi-ideal OIF CEI-224G signal source

- 56 GHz
- ultra-low phase noise
- ultra-low wideband noise

PHASE NOISE AND JITTER MEASUREMENT: EXPERIMENT FOR 224 GBPS SERDES

Measurement:

 phase noise measurement to 10 GHz offset

CHALLENGE 4: MEASURING TRUE ADC AND DAC PERFORMANCE AND FRONTEND DISTORTIONS

ADC VERIFICATION WITH SMA100B: TESTING SPURIOUS FREE DYNAMIC RANGE (SFDR)

Setup 1a: below 67 GHz – 1 x SG + balun, 1-tone

ADC VERIFICATION WITH SMA100B: TESTING SPURIOUS FREE DYNAMIC RANGE (SFDR)

Setup 1b: below 67 GHz; 2 x SG \rightarrow 180° phase alignment at ref. plane, 1-tone

ADC VERIFICATION WITH SMA100B: TESTING SPURIOUS FREE DYNAMIC RANGE (SFDR)

Setup 1c: below 67 GHz; $2 \times SG \rightarrow 180^{\circ}$ phase alignment at ref. plane, 2-tone

2 x R&S SMA100B: quasi-ideal ADC stimulus quasi-ideal RefClk

PHASE ALIGNMENT OF DIFFERENTIAL SIGNAL DESCRIPTION OF METHOD

- 1. Both instruments are set to desired frequency and level
- 2. Script performs level measurement to determine SG power levels P1 and P2.
- 3. Model is fitted to measured power levels to gain phase offset

4. 180° phase offset can be achieved at reference plane

CHALLENGE 5: ANALYZING AND DEBUGGING POWER REFERENCE DESIGNS AND POWER INTEGRITY PROBLEMS

POWER MANAGEMENT / POWER INTEGRITY TEST DEDICATED TOOLS FOR VALIDATION & DEBUG TEST

The Right Scope

- •4 / 8 channels and more
- Fast update rate: 4.5 Mwfms / s
- High resolution: 12 bit ADC (18 bit in HD mode)
- •>45 k FFT/s
- High internal DC offset for high resolution on power rail ripple (2V @ 0.5 mV/div)
- Built-in AWG (option)

Specialized Probes

- Power Rail Probe
- Bandwidths: 2 GHz / 4 GHz
- Low noise with 1:1 attenuation
- Extended offset range
- DC meter to find offset value
- Current probes

Analysis Functions

Typical measurements

- Load step response, ripple and drift measurements
- Power-up/down sequencing
- PSRR / PSNR testing
- EMI / crosstalk debugging (frequency domain)
- Control bus analysis and timing (protocol)

• . . .

POWER MANAGEMENT FOR SOCS AND RFSOCS: INDUSTRY TRENDS AND CHALLENGES

- Growing demand of high-performance SoCs and RFSoCs for use in
 - data centers
 - fixed and wireless network infrastructure
 - modern ADT applications
- Power delivery solutions need to provide a high number of low-voltage / high-current power rails with
 - precisely controlled sequencing for power-up and power-down
 - low voltage ripple and fast response on load steps
 - high efficiency
- Power delivery designs use a combination of linear and switching regulator technologies
 - power rails with high currents: increasing use of multi-phase buck converters (instead of single-phase buck converters)
 - \rightarrow test of phase alignment / phase management requires oscilloscopes with >> 4 channels
 - power rails with low currents and requirements for low noise and ripple: use of low-dropout linear regulators (LDOs)
 → test of Power Supply Rejection Ratio (PSRR)
 - test of power sequencing and power rail disturbances
 - → requires oscilloscopes with > 4 channels, high resolution and power rail probes with DC offset and built-in DC meter

MULTI-CHANNEL MEASUREMENTS ON POWER DESIGNS WITH MULTI-PHASE BUCK CONVERTERS

Multi-Channel Analysis:

- ► input voltage: V_{in}
- output voltage: V_{out}
- various switch node voltages
- various inductor currents
- control bus analysis, incl. decoding
- power sequencing of SOC power rails

Multi-Domain Analysis

- Time Domain
- Frequency Domain
- Protocol Domain

POWER SUPPLY REJECTION RATIO (PSRR) MEASUREMETS ON LOW-DROPOUT LINEAR REGULATORS (LDOS)

POWER SUPPLY NOISE REJECTION (PSNR) MEASUREMENT ON REFCLKs, PLLs, etc.

injection of ripple / noise on DUT power rails

testing of related degradations of phase noise / jitter performance

VERIFICATION OF POWER SEQUENCING IN POWER DELIVERY DESIGNS WITH MULTIPLE POWER RAILS

Sampling rate	Capture Duration (500 Mpoints)	Capture Duration (1Gpoints)
5 Gsample/s	100 ms	200 ms
500 Msample/s	1 s	2 s
5 Msample/s	100 s	200 s
8 Ksample/s	17h 21m 40s	1d 10h 43m 20s

- Multiple channels to see more events
- Deep record length for longer observations
- Flexible and intuitive waveform setup
- ► Configurable delay measurement setup

CROSSTALK ANALYSIS AND EMI DEBUGGING WITH FAST FFT FUNCTIONALITY

- Standard fast spectrum with 45k FFTs/second
- Support log-log scale and dBuV display of unit
- Peaklist, min/max-hold and intensity grading

HZ-17 Near Field Probes support 30MHz to 3GHz HZ-16 Amplified extend HZ-17 down to 9kHz

RESPONSE TIME MEASUREMENT ON CONTROL MESSAGES: TRIGGER & DECODE ON LOW-SPEED SERIAL BUSES

Horizo 4 ms/ 16 r -5810 4 ms	inteal div 250 MBa/s isb 10 Mpts Tab 1	Acquisition Sample 12 bit 4 + 4	4ist 53 4 ms	High Sa	ample Rate	12.0		Hork 4 m Te	20ntal Rufov 40 kSaje 5 ma 1 k kaje Tarb 1 KGAJE	Acquisition Sample 12 bit Hist	119 	Low Sample Rat	te IIIIIIIIII	12 ms		16	► Du w
5B1 C	AN			ABCS 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		Sh (D: C1		581	CAN		(F4D: 01			D: CIN	D: 96h		► Su fo
2.5 me	·	12.95 ms		13.3 ms	13.65 ms		14 ms	12.5 r	ms	12.95 ms		13.3 ms 13.	65 ms		14 ms		
•	() de la	0.4	T. e.e.	fumbral			10 hor	•							11.1		
Tel - ar	0k	4.1 ms	ChEF-R	-	169	h 2h	-	3	Ok	4.1 ms	CIFT-R		175h	2h	-		Options
							28.84	4							28 84		
						ABC 4h		5					630A8C		18 46 51 81		
					381	0002h 4h		6									MADJ-KJ
		10.56 ms			A2h			7	Form error								
		12.001 ms	Error					8	Ok	12.001 ms							MX05-K52
		12.821 ms	CEFF		123	4AB Bh	B5 C1 46 AE A7 29	9	Cik	12.821 ms	CEFF		1234AB		B5 C1 46 AE A	7 29 1	
		15.624 ms	Overload			-	-	10	Ok	15.624 ms	Overlo	ad		-	-		
1	Bit stuffing ci	16.178 ms	-		1BC	^h Ind	State		Start	Туре		Symbol		Identifi	. D	Value	
100 m .v	V/ 2015 CA	N					Ok		4.1 ms	CBFF-R		EngineStatus		1E5h			
						4	Ok		5.101 ms	CBFF		EngineStatus				2B B4	
						5	Ok		6.58 ms	CEFF		NM_Gateway_PowerT	rain	630ABC.		18 46 51	в1
						6	Ok		8.78 ms	CEFF-R		Ignition_Info		3B1C002	2h 4h		
						7	Form error		10.56 ms	CBFF		DiagResponse_Motor		A2h		70 61 C3	СВ
						8	Ok		12.001 ms	Error							
						9	Ok		12.821 ms	CEFF		EngineData		1234AB.	8h	B5 C1 46	AE A7 29 1E 7F
						10	Ok		15.624 ms	Overloa	d ·						

- Dual Path Protocol for correct decode even when low in sample rate
- Support symbolic decode with additional detail for complex protocols

Options		
MX05-K510	Low speed serial buses	I ² C, SPI, RS-232, UART
MX05-K520	Automotive buses	LIN, CAN-/FD/XL

^{ch} Ind		Start	Туре	Symbol	Identifi	D	Value	Nominal bit rate	Data bit rate	Field	Value	Label	
3	Ok	4.1 ms	CBFF-R	EngineStatus	1E5h	2h		58.5 kbps	58.5 kbps	CRC	25270	EngSpeed	49589.000 r
4	Ok	5.101 ms	CBFF	EngineStatus			2B B4	55.7 kbps	55.7 kbps			IdleRunni	Running
5	Ok	6.58 ms	CEFF	NM_Gateway_PowerTrain	630ABC		18 46 51 B1	52.7 kbps	52.7 kbps			EngTemp	- 90.000 degC
6	Ok	8.78 ms	CEFF-R	Ignition_Info	3B1C002h			53.4 kbps	53.4 kbps			EngForce	42926.000 N
7	Form error	10.56 ms	CBFF	DiagResponse_Motor	A2h		70 61 C3 CB	48.5 kbps	48.5 kbps			PetrolLevel	174.000 l
8	Ok	12.001 ms	Error									Undefined	A7h
9	Ok	12.821 ms	CEFF	EngineData	1234AB	8h	B5 C1 46 AE A7 29 1E 7F	51.0 kbps	51.0 kbps			EngPower	77.210 kW
10	Ok	15.624 ms	Overload									Undefined	7Fh
11	Bit stuffing er	16.178 ms	CBFF	DiagRequest_Motor	1BCh			48.0 kbps	48.0 kbps	1			

POWER INTEGRITY MEASUREMENTS: POWER RAIL NOISE, RIPPLE, etc.

- Low noise and high resolution for power ripple
- Deep capture to look into slow drifts and response
- ► Spectrum capability to identify crosstalk, noise, ...

POWER DELIVERY / POWER INTEGRITY TEST WITH MXO 5 MORE channels to analyze multiphase buck 4 / 8 channels and more converters and power-up / power-down sequencing > 4.5 Million wfms / sec Instantly see **MORE** infrequent events 12 -bit ADC 18-bit (HD-Mode) MORE resolution on all sample rates **MORE** resolution on power rail disturbance 2 V offset @ 0.5 mV/div (DC meter functionality with power rail probes) Trigger with MORE sensitivity and **Digital** trigger higher flexibility to define trigger conditions > 45 k FFT / sec **MORE** FFTs with unmatched speed 500 Mpts memory /ch Capture even MORE time

SIGNAL AND POWER INTEGRITY: CHALLENGES AND TEST SOLUTIONS

