IEEE 519-2014

Mark Halpin November 2014

What Has Stayed the Same?

- Most importantly, the overall philosophy
 - Users are responsible for limiting harmonic currents
 - System owner/operator are responsible for managing voltage quality
 - All recommended limits apply only at the PCC
- Existing recommended limits are retained
 - Some new ones added

What Has Been Changed?

- Philosophy of changes → Driven by 20 years of experience with 519-1992 and increased cooperation with IEC
- Multiple changes related to
 - Measurement techniques
 - Time varying harmonic limits
 - Low voltage (<1 kV) harmonic limits
 - Interharmonic limits
 - Notching and TIF/IT limits
- · Also "editorial" changes to
 - Reduce document size
 - Minimize miss-use of PCC-based limits
 - Better harmonize with other standards projects

Measurements

- Recommended to use IEC 61000-4-7 specifications
 - 200 ms (12 cycle @ 60 Hz) window gives 5 Hz resolution

Indices

- From IEC 61000-4-30
 - 3 s "very short" value

$$F_{n,vs} = 2\sqrt{\frac{1}{15} \sum_{i=1}^{15} F_{n,i}^2}$$

- 10 min "short" value

$$F_{n,sh} = \sqrt[2]{\frac{1}{200} \sum_{i=1}^{200} F_{(n,vs),i}^2}$$

Changes to the Limits

- New voltage limit provision for low voltage (<1 kV)
 - 5% individual harmonic, 8% total harmonic distortion
- Revised current limits for general transmission systems (> 161 kV)

Maximum Harmonic Current Distortion in Percent of ${\rm I_L}$						
Individual Harmonic Order (Odd Harmonics)						
$I_{\rm sc}/I_{\rm L}$	<11	11≤ <i>h</i> < 17	17≤ <i>h</i> < 23	23≤ <i>h</i> < 35	35≤h	TDD
<25*	1.0	0.5	0.38	0.15	0.1	1.5
25<50	2.0	1.0	0.75	0.3	0.15	2.5
≥50	3.0	1.5	1.15	0.45	0.22	3.75

Percentile-Based Voltage Limits

- Daily 99th percentile very short time (3 s) values should be less than 1.5 times the values given in Table ...
- Weekly 95th percentile short time (10 min) values should be less than the values given in Table ...

Percentile-Based Current Limits

- Daily 99th percentile very short time (3 s) harmonic currents should be less than 2.0 times the values given in Table ...
- Weekly 99th percentile short time (10 min) harmonic currents should be less than 1.5 times the values given in Table ...
- Weekly 95th percentile short time (10 min) harmonic currents should be less than the values given in Table
 ...

Interharmonic Limits

("Recommendations")

• Voltage-only 0-120 Hz limits based on flicker

Editorial Changes

- Improve definitions of all relevant terms to account for greater understanding and improved instrumentation
- Removal of "flicker curve"
- Removal of "tutorial" material (shorten document)
- Strengthen introductory material dealing with PCConly applicability of recommended limits

Experience So Far

- Granted, this is limited mostly to "experiments" over the last 6-12 months
 - Users with relatively stable harmonic emissions are essentially unaffected
 - Users with rapidly-changing harmonic emissions may show reduced levels in measurements
 - The 200 ms window acts as a smoothing filter
- Percentiles and multipliers appear to be relatively consistent with "short time harmonic" multipliers often used with 519-1992

Passive Mitigation of Power System Harmonics

Mark Halpin November 2014

Outline

- Passive Filters
 - Basic resonance concepts
 - Single-tune filters
 - C-type filters
- Performance comparisons
 - Sensitivities to network conditions
 - Overall effectiveness
- Conclusions

Series Resonance Concept

Major concept: The impedance can become a very low value

Series Resonance In Practice

Effects include:

- 1. Heating in transformer
- 2. Fuse blowing at capacitor bank

Typical resonances:

- --500 kVA, 12.47 kV, 5%
- --300-1200 kvar capacitor
- $--\omega_r$ =173-346 Hz (3rd-6th harmonic)

Parallel Resonance

Major concept: The impedance can become a very high value

Parallel Resonance in Practice

Effects include:

- 1. Excessive voltage distortion
- 2. Capacitor bank fuse blowing

Typical resonances

- --500 kVA, 480 V, 5%
- --400 kVA load, 80% pf lagging
- --pf correction to 95% lagging (120 kvar)
- $--\omega_r$ =547 Hz (9th harmonic)

Resonance Summary

- Series resonance
 - Widely exploited in harmonic filters
 - Can lead to (harmonic) overcurrents
- Parallel resonance
 - Frequently leads to (harmonic) overvoltages
 - Sometimes used in blocking filters

Single-Tuned Filters

"Single tune" means a single resonant point

Applications

- Classic single-tuned filters
 - Common in industrial applications
 - Inside facility
 - At the PCC
 - May use multiple filters, each tuned to a different frequency
 - Traditionally used by utilities (declining)
- C-type filters
 - Not common in industrial applications
 - Becoming dominant in the utility environment
 - Often used in conjunction with classic single-tuned designs
- Purpose is always the same—give harmonic currents a lowimpedance path "to ground"
 - Results in reduced voltage distortion

Application Considerations

- Ratings
 - Capacitor
 - RMS voltage
 - Peak voltage
 - RMS current
 - kVA
 - Reactor currents
 - · Peak current
 - RMS current
- Losses

Filter Application Procedure

- Use frequency scan and harmonic study to determine requirements
 - Number of filters (estimate)
 - Tuned frequency for each
 - Ratings (estimate)
- Start with lowest-frequency filter and work upward (in frequency)
 - Each filter has parameters than can be at least partially optimized
 - Consider credible system changes
 - Assess impacts of filter parameter variations (±10%, maybe more)
- Evaluate total performance vs. requirements
 - Consider credible system changes
 - Specify required ratings (tweak design as necessary)

Comments on Frequency Scans

- These results indicate the potential for a problem
- They are extremely useful for designing filters
 - Identification of high/low impedance frequencies (resonant conditions)
 - Assessment of filter impacts on frequency response
 - Alteration of undesirable impedance characteristics
 - Demonstration of intentional low impedance path(s)
- They are subject to the accuracy of the models used
- Complete assessments require a harmonic study
 - Results subject to model accuracy and assumptions
 - Limit compliance
 - Ratings of components

Sensitivities--Conclusions

- Large changes in system impedances, equivalents, etc., (fault MVA) are usually needed for significant effects
- Relatively small changes in capacitor bank status (or size) can have major impacts
- Filters must function under all of the potential scenarios

Design Approach

- Convert existing 480 V cap bank to filter bank by adding series reactor
 - Capacitor voltage rating often will be exceeded in the end!
 - X/R ratio of reactor can have significant impact
 - Losses
 - Performance
 - Additional resistance can be added in series if needed (losses will increase!) for performance

Note: Tuned frequency normally taken ≈5% below target → Avoid overload

→ Parameter variation

Filter Quality ("Q") Factor

 The "sharpness" of the frequency response of a filter is often indicated by the filter "Q"

$$Q = \frac{h_{tune} X_{L(60)}}{R} = \frac{(2\pi f_{tune})L}{R}$$

- The filter Q indicates
 - Damping (less sharp characteristic—more damped)
 - · Lower Q, more damping
 - Losses
 - · Lower Q, more losses
- For the previous slide
 - Q=500, 50, 5, 1

Filtering on 12 kV Network

- Discussion so far based on filtering on customer-side (LV)
 - Presumably associated with limit compliance
- If all network users are in compliance (currents), excessive voltage distortion may still exist
 - Strong resonances can create large (noncompliant)voltage effects from small (within compliance) currents
 - Solution is to filter on MV (utility) side
 - Filter designs must account for LV filter presence (or not)

Same Approach for Filter Design

$$\begin{split} f_{tune} &= \frac{1}{2\pi\sqrt{LC}} \\ 300 &= \frac{1}{2\pi\sqrt{L(10.235\mu)}} \\ L &= 27.5\text{mH} \\ X_L &= 10.367\Omega \end{split}$$

Note: Tuned frequency normally taken ≈5% below target → Avoid overload

→ Parameter variation

Q=100 \rightarrow R=0.5184 Ω Q=10 \rightarrow R=5.1835 Ω

Filter eliminates 5^{th} resonance, but creates new ones that could be as bad (or worse). Best solution probably to split 600 kvar into 2x300 kvar and make two filters— 5^{th} and 7^{th}

The C-type Filter

- Tuning (selection of parameters) is more difficult than for single tuned filters
- Starting from an existing cap bank $\mathbf{C}_{\text{total}}$
 - Step 1→ Choose L to tune filter frequency as for single-tuned designs (based on C_{total})
 - Step 2→ Divide existing capacitance into two parts
 - C₂ → chosen so that L and C₂ are series resonant (Z=0) at the power frequency
 - C₁ → determined from "C_{total}-C₂" (C in series combines as parallel)
 - Step 3→ Pick R to provide desired high(er) frequency damping

C-type Filter Example

- Will a 12 kV C-type perform better than the conventional single-tuned design?
- Existing 600 kvar bank \rightarrow C_{total} = 10.235 μ F
 - L=10.367 Ω (27.5 mH) for $\rm f_{tune}$ =300 Hz (from ST design)
 - For 60 Hz "bypass" tuning, C_2 =255.85 μF
 - $C_1 = 10.66 \mu F$
 - Select R for desired damping
 - Note Q defined differently $Q = \frac{R}{h_{tune} X_{L(60)}} = \frac{R}{(2\pi f_{tune})L}$

Comments on Comparisons

- Both filter types are effective at the tuned frequency
- C-type has very low power frequency losses
 - Single-tuned filter has resistive losses proportional to cap bank reactive current squared
- Low Q single tuned designs are helpful to reduce secondary resonances created by filter additions
 - Alternative is to add secondary filters
- Low Q C-type designs provide good damping of secondary resonances by default
 - Much less likely to encounter "secondary" problems
- C-type designs make poor utilization of existing cap banks
 - Consider using one bank for var compensation with a separate filter installation

Passive Filter Conclusions

- Two main types exist—both work
 - Single tuned
 - Main advantages: Simplicity, up-front cost
 - Main disadvantages: losses, can create secondary problems
 - C-type
 - Main advantages: Low losses, HF response
 - Main disadvantage: up-front cost, poor utilization of existing cap banks
- Frequency scans are a great tool for filter design
 - A harmonic study is required to determine necessary ratings