

What is SF6 Its Sulphur Hexafluoride

Is SF6 a Health Hazard

Pure SF⁶ is physiologically completely harmless for humans and animals; it's even used in medical diagnostic. Due to its weight it might displace the oxygen in the air, if large quantities are concentrating in deeper and non ventilated places.

<u>Legislation for chemicals does not categorise SF6 as a hazardous material.</u>

January 20, 2014 Sharif Ahmed Senior Member IEEE

For Major Operational Activities, **Reduced Level Of PPE** Can Be Used For MV GIS

	Comparison of PPE ³ level required for operations					
Activity	MV Air-Insulated Switchgear (AIS) ¹	MV GIS				
Open/close circuit breaker	HRC 2 (door closed) ² HRC 4 (door open)	HRC 0				
Isolate circuit	HRC 4 (racking, door open or closed) (Note: isolation in metal- clad requires racking to test or disconnect position)	HRC 0 (operation of three-position switch to open position)				
Application of safety grounds	HRC 4	HRC 0				
	January 20, 2014 Sharif Ahmed Senior Member IEEE					

Technical Data						
* Maximum	IEC	IEC	ANSI	IEC	IEC	ANSI
Rated Voltage (kV)	7.2	12	15	17.5	24	38
Rated Power Frequency Withstand Voltage (kV)	20	28	36	38	50	80
Rated Lightning Impulse Withstand Voltage (kV)	60	75	95	95	125	200
Rated Short Circuit Breaker Current* (kA)	40	40	40	40	40	40
Rated Short Time Current 3 Sec* (kA)	40	40	40	40	40	40
Rated Short Circuit Making Current* (kA)	104	104	104	104	104	104
Rated Busbar Current* (A)	5000	5000	5000	5000	5000	5000
Maximum Circuit Breaker Rating* (A)	4000	4000	4000	4000	4000	4000
January 20, 2014 Sharif Ahmed Senior Member IEEE					Page 1	

Low-Voltage Compartment

- Height: 850 mm 1200 mm (option)
- Removable, bus wires and control cables plugged in (via 6 or 10-pole coded module plug connectors)
- Panel control via conventional control devices or digital bay controller
- Customer-specific equipment (protection, control, metering, annunciation)
- Wiring in H07VK, optionally also heat-resistant and halogen-free

January 20, 2014 Sharif Ahmed Senior Member IEEE

	Dur	nmy	connect	or		
	Dummy Cable Connector for sealing and voltage-proof closing of CONNEX bushings. suitable for outdoor use or offshore-/soil-proof					
-01	No.	Size	Max. operating voltage	l Use 1	Packing unit	Weight
and			U _m (kV)			(kg)
	827 150 003	2	42	aboveground	1	0.6
	Jan	nuary 20, 20 Senior M	14 Sharif Ahmed Jember JEEE			Page 1

ADVANTAGES OF GIS IN COMPARISON TO AIS

Environmental Aspects

AIS

- Influence of dust, humidity and vermin
- to all active parts as busbars, breakers,
- cable connections:
- Need of maintenance, sequence
- depending from environmental
- Influence
- • By high humidity hygrometer and
- · or heaters in cable compartment is
- necessary. Therefore additional
- costs and control is necessary
- By vermin's, special measurements
- in building, cable compartments,
- switchgears, such as alarming,
- shielding etc. are necessary.

No enviromental influence to maintenance free, Hermatically sealed S/G. Busbars are single pole gas insulated and probability of internal faults are substantially reduced and flash over between phases is not possible

GIS

No influence of insulation level.Peace of mind.

January 20, 2014 Sharif Ahmed Senior Member IEEE

Description	Frequency in 10 years (AIS)	Duration (days)/Qty	<u>Cost</u>	<u>AIS</u>	GIS
Indoor substation				А	A+
Arc Resistance				В	0
Real Estate		40'X 18' vs. 21'X 10'	\$/ sqf	с	с-
Installation at site		crane vs. forklift / manhours		D	D -
Spare breaker		1	\$	E	0
Grounding Device		1	\$	F	0
Routine Maintenance Interval	3	5	\$/hour	E	E -
**Suits according to NFPA 70E		5	\$	F	0
Outage maintenance	1	5	\$/hour	G	0
Lost of production			priceless	-	_
No phase to phase fault			priceless		
			Tatali		H -25%

January 20, 2014 Sharif Ahmed Senior Member IEEE

Page 1

