What's New In Medium Voltage Drives

William Lockley Technical Consultant Lockley Engineering

Richard Paes Global Industry Technical Consultant – Oil & Gas Rockwell Automation

IEEE Northern Canada & Southern Alberta Sections PES/IAS Joint Chapter Technical Seminar

Outline

- Adjustable Speed Drive Basics
 - What is a "Drive"
 - Purpose and benefits of ASD
 - Typical Applications
- Adjustable Speed Drive Designs
 - ASD Design Fundamentals Semiconductors
 - Voltage / Current source
 - Rectifiers
 - Passive / Active Front End
 - Multi-pulse
 - Inverters
 - 2 Level
 - Multilevel
 - Series H bridge

Outline

- Adjustable Speed Drive Basics (continued)
 - Typical voltage source topologies
 - Typical current source topologies

What's New with MV Drives

- New directions and focus
- Industry Trends
- Specialized Applications
- New Frontiers

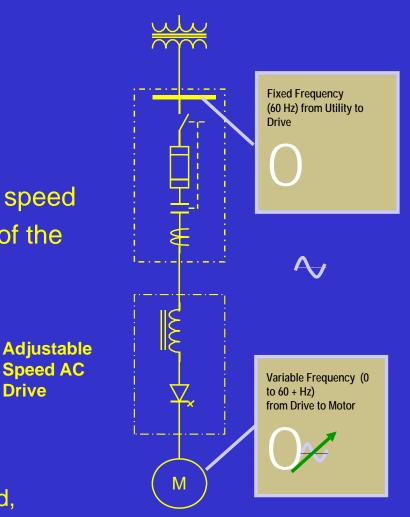
Outline

- IEEE 1566 Large Drive Standard
 - Adjustable Speed Drive System (ASDS)
 - Adjustable Speed Drive History
 - Purpose and need for the standard
 - Status of the standard
 - IEEE 1566 2nd Edition
 - Technical changes and innovations
 - Overview
 - Unique applications such as marine, long cable runs and generator supply
 - Data Sheet and Data Sheet Guide
 - How to apply and order a MV ASD
- Conclusion

What is a "Drive"?

A "Drive" is the truncated form of:

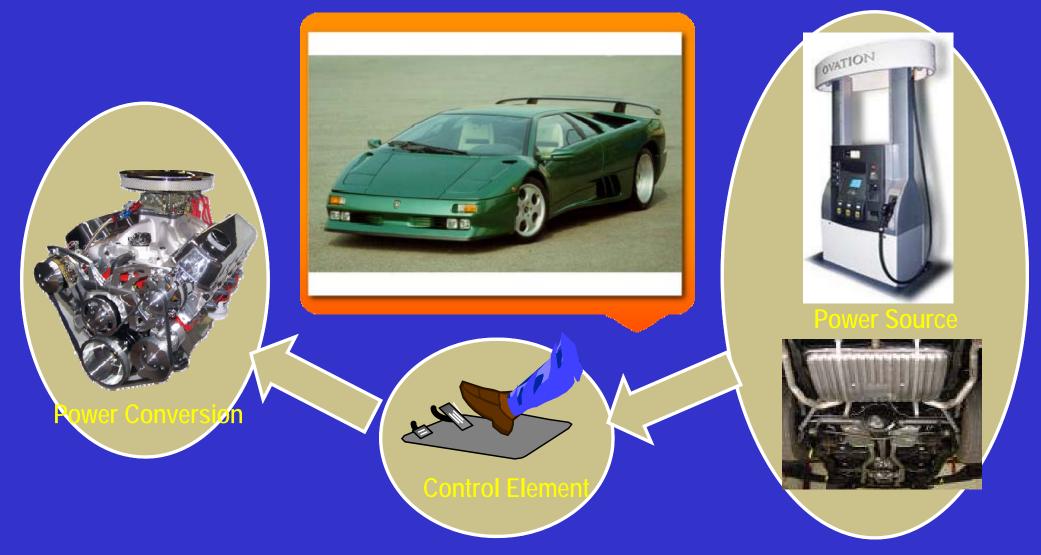
- Adjustable Speed Drive (ASD) or
- Variable Frequency Drive (VFD)


As the complete description better conveys, it is an AC controller which allows us to adjust the speed of an electric motor (by changing the frequency of the power delivered to the motor.

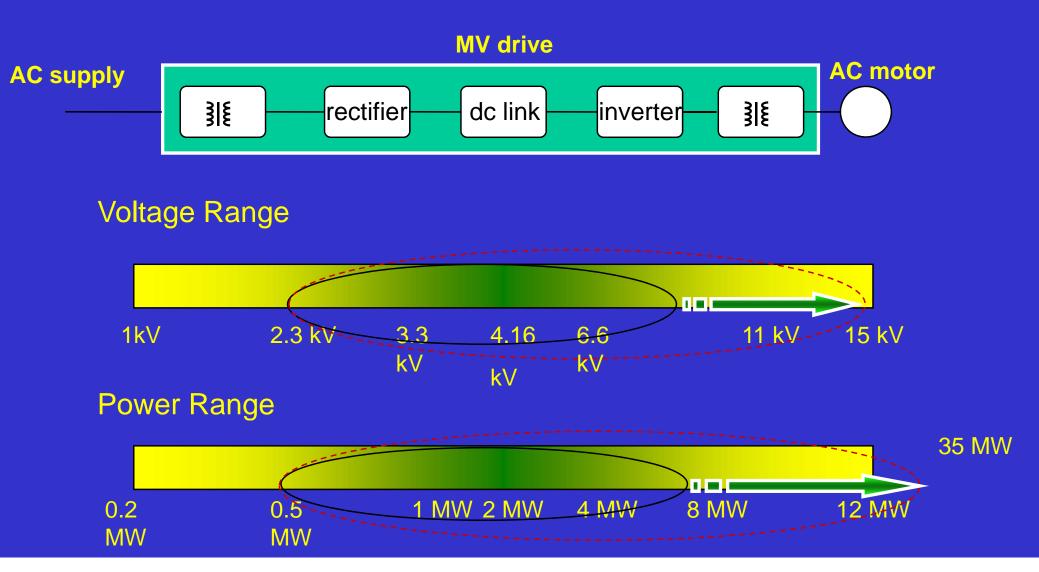
MOTOR SPEED = $120 \times F$

- 120 = constant
- F = supply frequency (in cycles/sec)
- P = number of motor winding poles

Both the "120" and "P" portions of the formula are fixed,


the only item we can use to adjust the motor speed is "frequency"

What is a "Drive"?



Slide 6 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

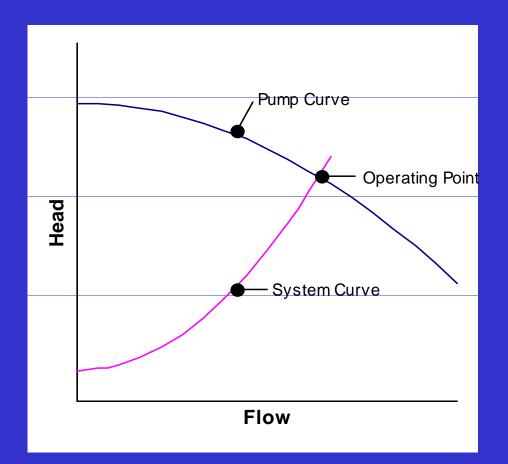
Medium Voltage Drive

Slide 7 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

BASICS

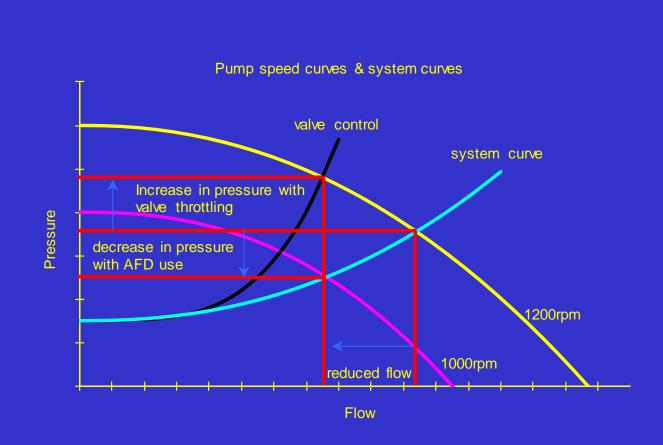
- Match the speed of the drive / motor to the process requirements
- Match the torque of the drive / torque to the process requirements
- Energy Savings

Slide 8 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014


- •Reduce maximum utility demand electrical and cost
- •Meet utility flicker restrictions while starting large loads
- •Improve equipment life due to soft starting
- •Increase mechanical equipment life by running at slower speeds
- •Controlled application of torque
 - i.e. reduced water hammer effects
 - i.e. conveyors
- •Reduced Pump Cavitation Problems
- •Reduce preventative and corrective maintenance costs by
- eliminating complex mechanical equipment valves, dampers, etc.
- •Allows the use of standard induction motors while increasing performance in terms of torque, inrush and power factor
- Reduce motor stress transient torques, thermal heating at start condition, no limit of starts/hr, high inertia loads
- •Improve process control by 'infinite' speed control and better information / tie in with supervisory control system
- •Forward / Reverse operation
- •Regenerative braking

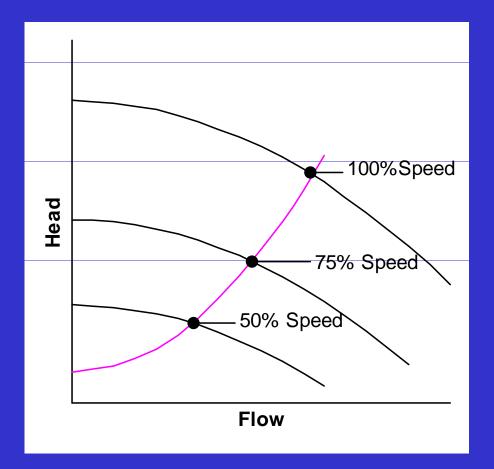
ASD on Pump Example

- All pumps must be sized to meet maximum flow and the static & dynamic heads of the system – "System Curve"
- Pump is selected such that the "Pump Curve" intersection with the System Curve gives the desired "Operating Point"



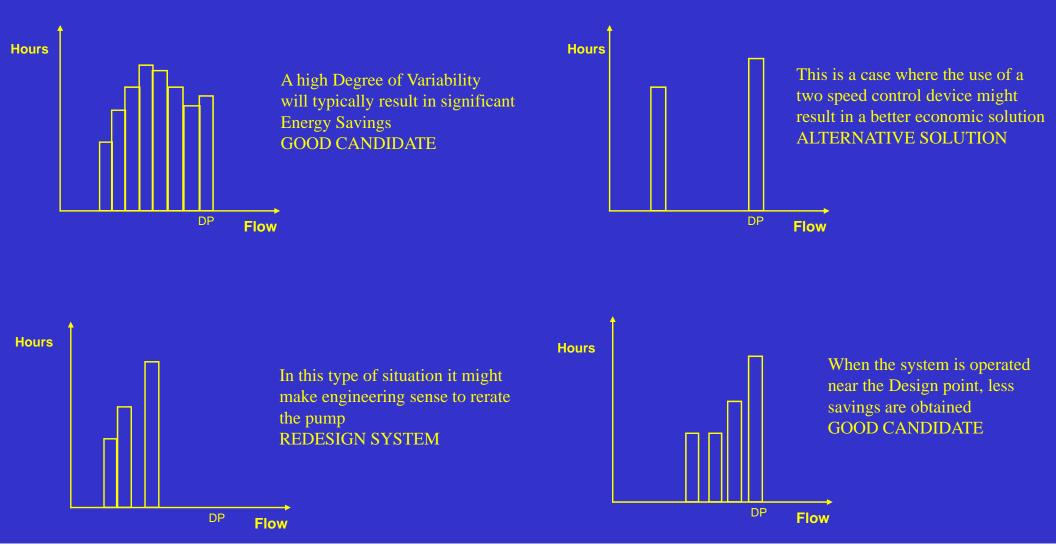
Pump Operating characteristics

- Without the use of an ASD, the flow must be controlled with the use of a valve which drops pressure across it
- Pressure drop = Loss



ASD on Pump Example

Adjustable speed operation allows flow to be controlled by shifting the operating point without energy losses associated with restricting flow external to the pump

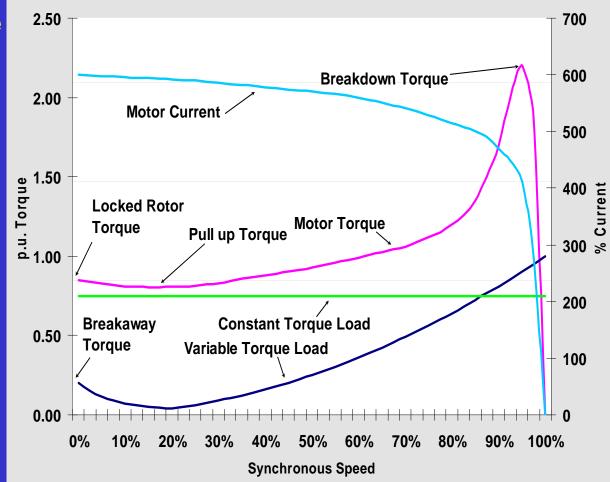


Slide 12 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

Energy Savings Considerations

Slide 13 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

Improve AC Induction Motor Performance

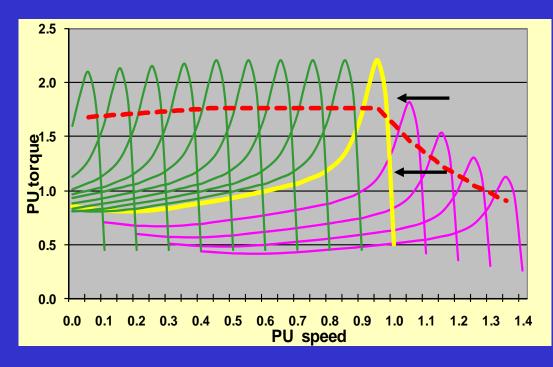


Typical Induction Motor Performance

- API inrush limit 650%
- 60 to 80% locked rotor torque at start typical
- Limited number of starts
 - Nema defines (2) cold, (1) hot
 - API 541 defines (3) cold, (2) hot

Operation on ASD

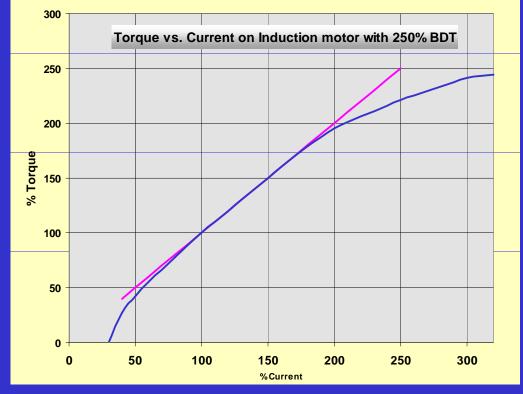
- Inrush current limited to starting torque required
- Torque at start improved
- Number of starts improved



AC Induction Motor Operation with Adjustable Speed Drive

- Allows continuous operation at reduced speeds by altering output frequency to motor
- Improves motor operating characteristics beyond across the line starting – torque / current
- Motor operates on right side of breakdown on torque curve
- Starts are not limited as on across the line start
- Torque can be applied smoothly to lessen impact on mechanical drive train

High Torque Operation


Operation of Induction Motor on ASD

Near rated break down torque can be realized during acceleration

Starting current is proportional to the torque in ranges of 50 to 200%

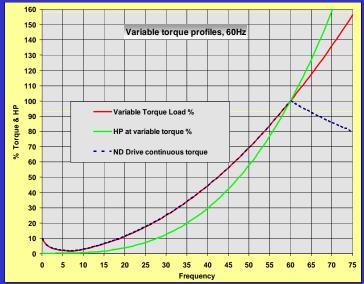
Drive must be sized accordingly to allow for this amount of current for the required duration of the start

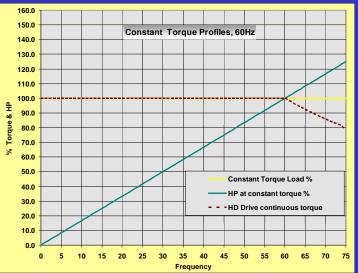
AFE PWM topologies allow pulse dropping to extend the drive rating at start, during short term overload and as an operating contingency

- Continuous Operation
- Service Factor
- Normal Duty 110% for 60 seconds (115% for 60 seconds)
- Heavy Duty 150% for 60 seconds
- Variable Torque Load Profile
- Constant Torque Load Profile
- Intermediate Duty 110% for 60 seconds
- Constant torque Load Profile

Load Requirements

Load Profile is the prime consideration when sizing an ASD

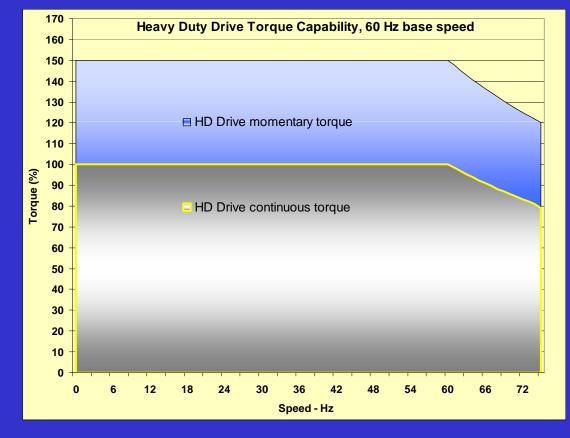

Continuous operation Starting


Motoring

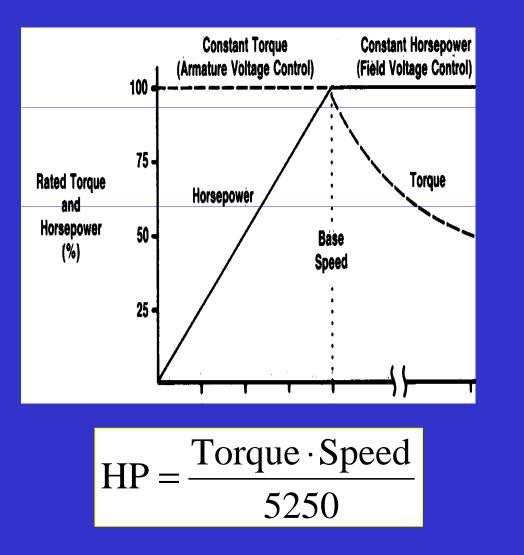
- Motor Rating FLC particularly
- Starting Overload
- Continuous Operation
 - Ambient / Environmental Conditions
 - Load type variable / constant torque
 - Service Factor
- Cyclic Loading / Overloading

Braking

- Overhauling load
- Similar aspects to the above



Heavy Duty Loading



Slide 19 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

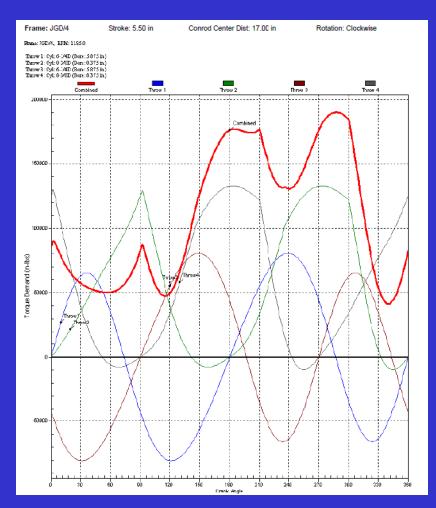
Operation Above Base Speed

Further benefit of ASD is the ability to run above base speed Note that torque is not unlimited and must be considered in sizing when operating above rated speed

Variable Torque Applications

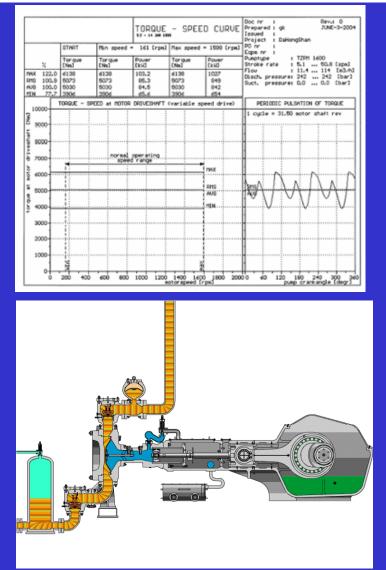
VARIABLE TORQUE:

- Oil / natural gas pipeline pumps & compressors
- Pulp & Paper Fan Pumps
- Water injection Pumps
- Electric Submersible
 Pumps
- Feedwater pumps
- Condensate, service water and makeup pumps
- Centrifugal compressors
- Draft Fans
- Hot Gas Fans
- Vacuum Pumps



Reciprocating Compressors

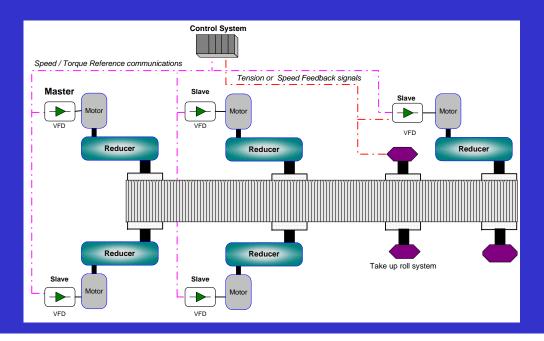
- Typically < 100% torque to start
- Constant torque load profile
- 50 to 100% speed range
- High pulsating torque
- Potential for unstable drive operation due to torque cycle
 - tuning of drive speed and current controllers
- Higher risk of vibration with rich load torque harmonic content
 - torsional analysis can provide information for inertial or damping requirements


Crank Effort Torque Curve

Positive Displacement Pumps

- Crank angle shows Pulsation of load torque over 1 rev of pump shaft revolution
- Peak at 100 degrees = 6138 Nm
- Min at Separation of 120 degrees = 3906 Nm
- Torque r.m.s. = 5073 Nm
- Torsional vibration study may help in determining coupling, flywheel and torsional damping requirements

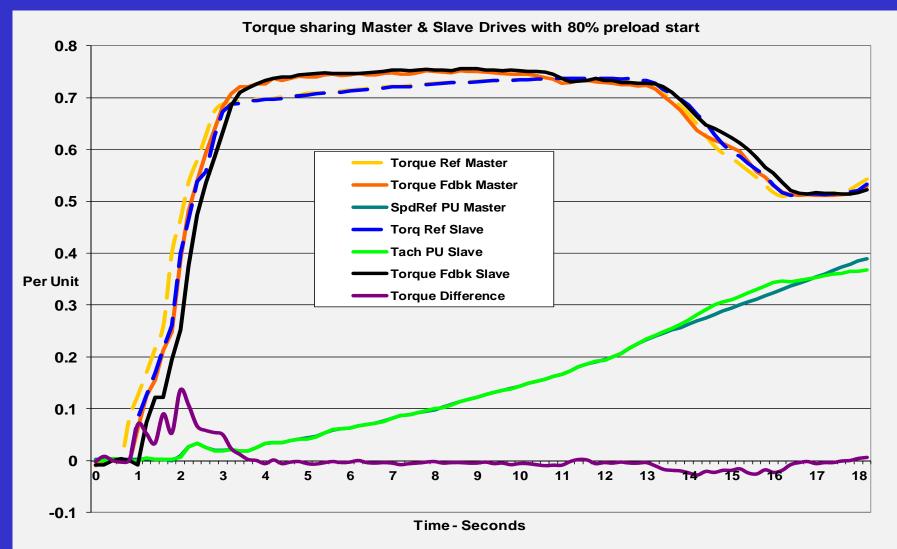
Apron Feeder / Conveyor Applications


- Constant torque application
- Rated torque is required over 0 -100% speed
- Short term 150% start torque is typical but torque levels and duration
- requirements vary with each application
- Higher / custom starting torques can be accommodated
- Different dynamics and control requirements are encountered depending on

conveyor configuration

- Uphill, downhill, level or combination of these
- Different lengths, tension control systems
- Single or multi-motor
- Drive pulley arrangement

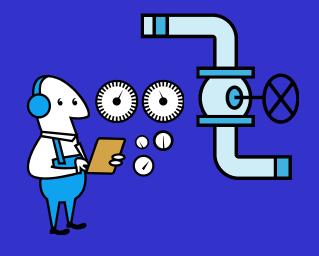
Affected parameters


- Starting torque
- Regenerative Braking
- Load-sharing
- Brake interface

Load Sharing

Slide 25 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

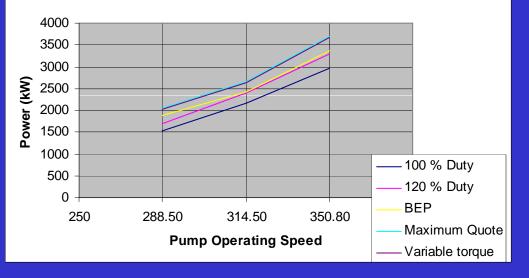
Slurry Pumps


Adjusting the speed of the pump:

- Optimize slurry Flow to meet requirements without valves.
 - Saves energy
 - Reduces wear reduction to 50% speed increases impeller life by 6 times
- Maintain the flow as pump wear occurs.

Starting the pumps with ASDs

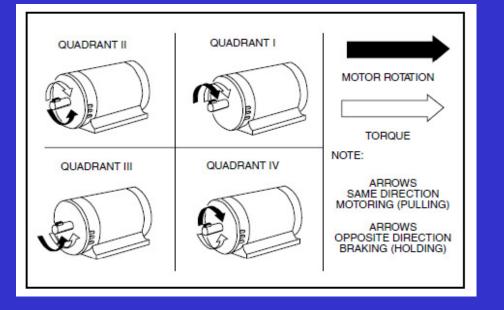
- Permits "Soft Starting"
 - reducing mechanical shock to drive train.
 - Reduces starting voltage drop on the electrical network
- Provides high initial torque to break away torque for silted pumps
- Offsetting the phase cycles of multiple piston pumps
 - Smoothes flow
 - Reduces pressure peaks
 - Reduces electrical network current peaks

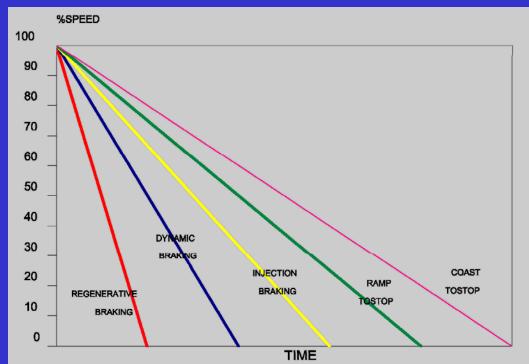


Slurry Pumping / Hydro-transport

• Slurry pumps are common in mining applications

- Oilsands are unique in combining mining and standard petroleum applications
- Density of the slurry is a consideration in rating the electric drive system
- Potentially an overhauling load regenerative energy




Regenerative Braking

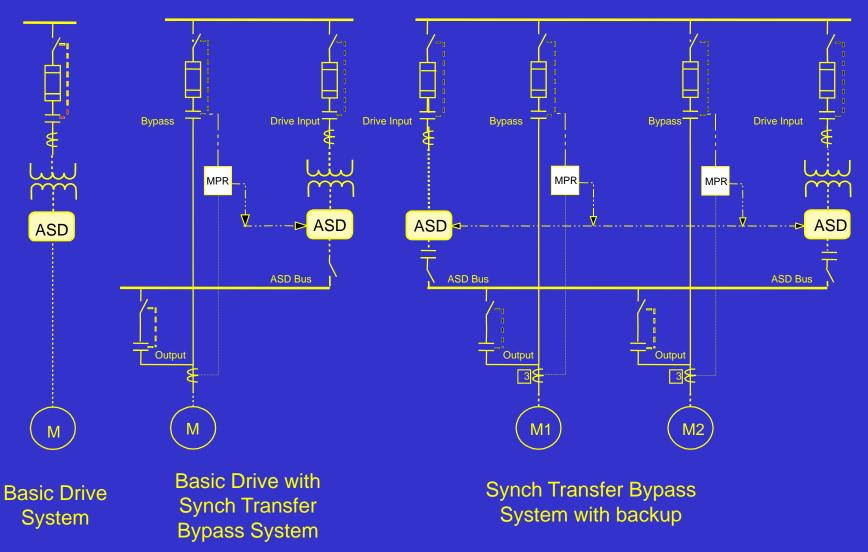
Overhauling loads are the most demanding braking application. Braking energy equal to or even possibly exceeding the motoring requirement are possible in applications such as conveyors, slurry pumps, etc. Regenerative Braking is the best method to deal with this.

An active front end rectifier is required to allow operation in all 4 quadrants

Multi-motor configuration

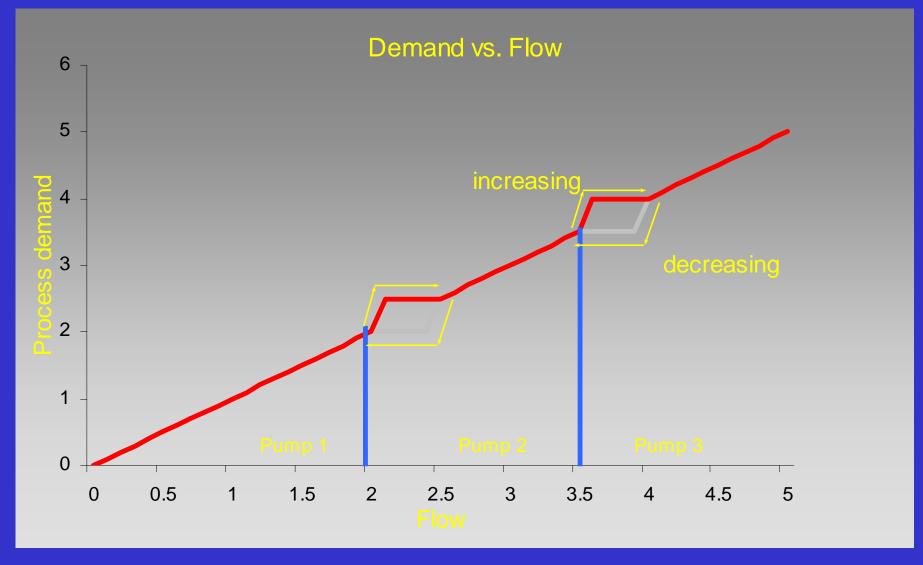
Reduced initial cost Simultaneous speed control Drive sized for total HP Motors can be mechanically coupled or separate

 Mechanically coupled motors must have identical motor characteristics


Individual motor protection required

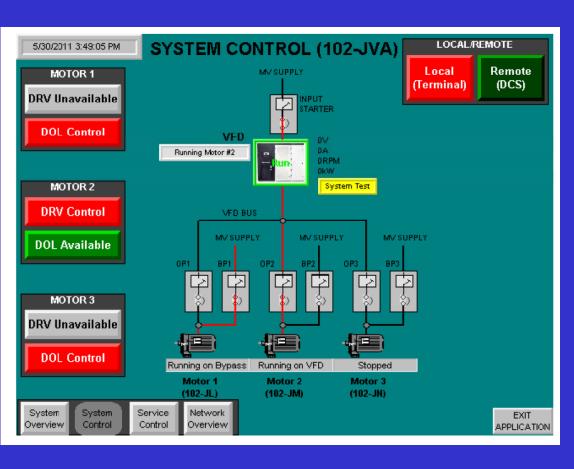
Can use output contactors to provide or facilitate possible redundancy

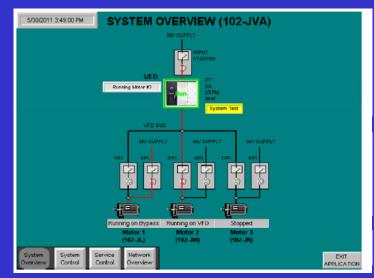
Synchronizing Transfer Configurations

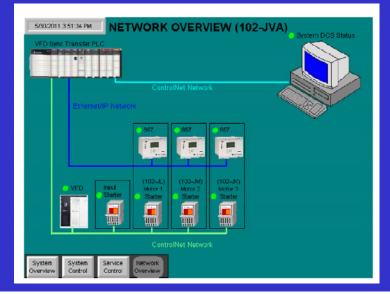


Slide 30 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

Process Output with Synchronous Transfer




Slide 31 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014



Synchronous Transfer Interface

Slide 32 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

Marine Applications

Slide 33 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

Benefits of Electric Propulsion

Increased Speed

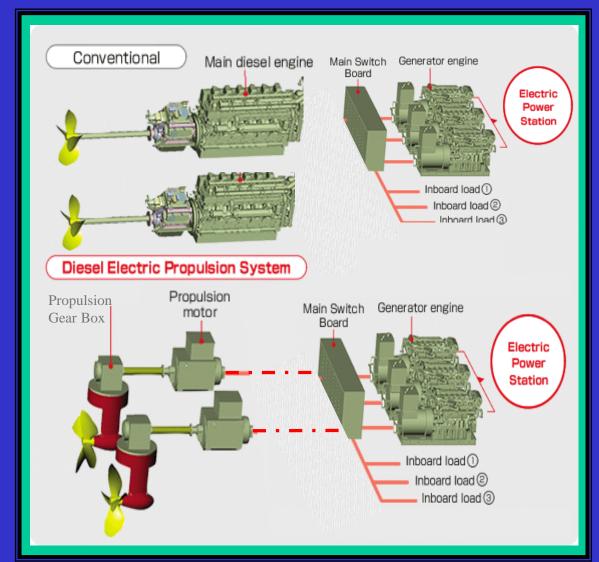
Typical platform supply vessel increased from 10 knots to 14 knots

Reduced Noise / Vibration

18-24 cylinder diesel engine has many pulsating torques that are fed back to generator

Better Handling / Maneuvering

Infinite speed control on thrusters and props


Less space required

Electric motor much smaller than diesel engine

Less air pollution

No pollutants from electric motors versus diesel

Easier to comply with Marpol restrictions Scaled generator loading with power management system

Benefits of Electric Propulsion

Eliminate mechanical pitch control

Reduced maintenance Higher efficiency Greater flexibility in ship layout More space in hull Lower Fuel Consumption Elimination of diesel engines

Scaled electrical generation

Higher Reliability

Less mechanical maintenance

10 year MTBF - electric drive & motor

Higher Efficiency

96% efficiency for electric drive and motor

Azipod Cruise Main Propulsion & Thruster Systems

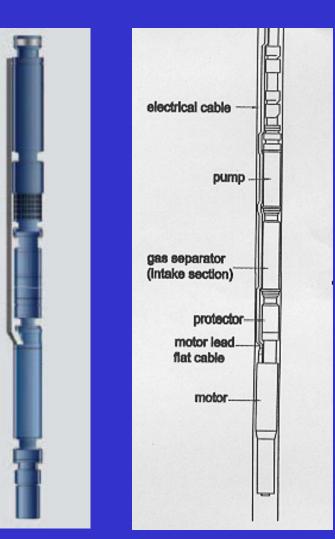
Antarctic Research Vessel

Main Propulsion System: 2 x 7000 KW Synchronous Low Speed Direct to Drive AFE Power Converters 6300V Ac Brushless Exciter – Dual Redundant Certification: RMRS – ACCU – Ice Class 7

Project – Up date

Project Up date

Electric Submersible Pump



•Centrifugal or progressive cavity pump directly driven by a three phase induction motor

- Specialized construction
 - Low inertia
 - High starting torque
 - Assemblies can be 35m in length while less than 12 to 17cm in diameter
- Extreme operating environment
 - High temperatures and pressures
 - Corrosive materials pumped
 - High sand content common

•Rotor shaft must have a small cross sectional diameter by design therefore has limited torque capability

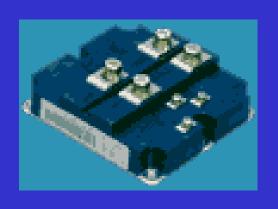
•Additional protection considerations relative to more conventional horizontal mounted systems

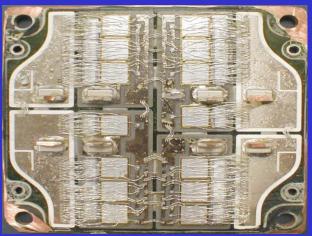
Base ASD Design Considerations & Objectives

High Availability Low capital cost Small footprint Higher voltages & ratings Low harmonics Motor Friendly – dv/dt, heating, CMV Simple design Ease of use Ease of installation

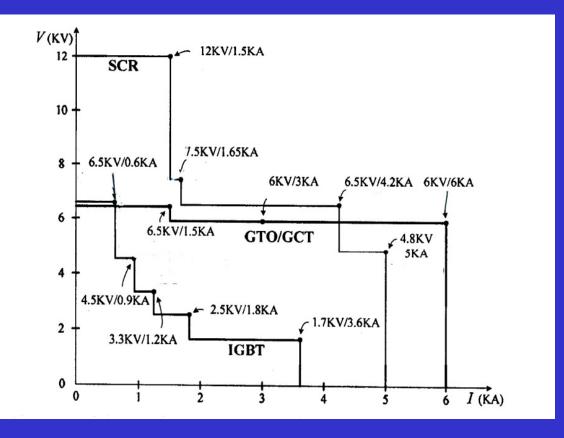
Low Total Cost of Ownership High Efficiency Power Factor Dynamic Response Features

Cost Effective Performs as expected

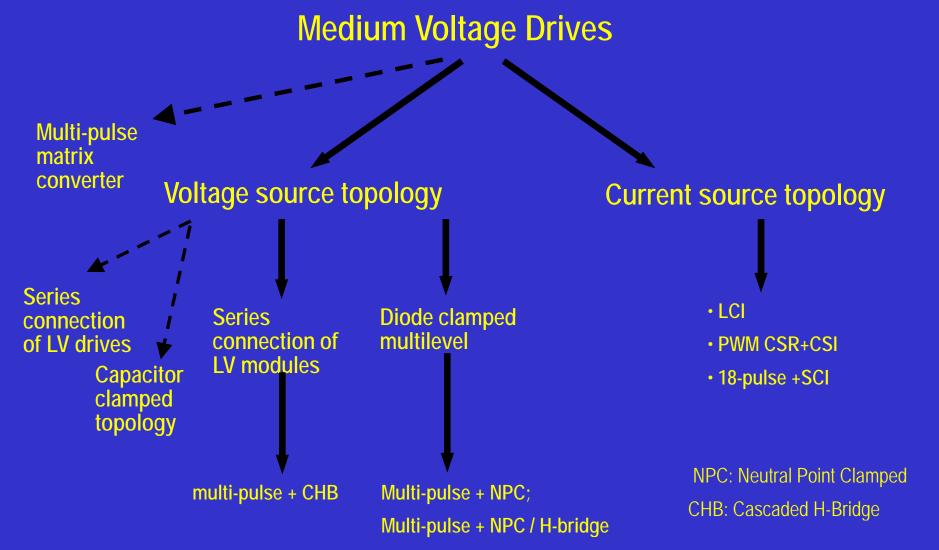



Basic ASD Design Considerations

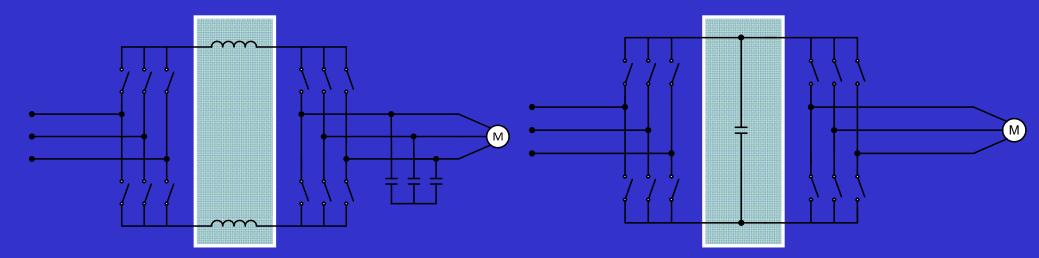
- •Wide variety of semi-conductors available
 - Diode
 - SCR
 - IGBT
 - IGCT
 - SGCT
- Each has its own set of design characteristics - strengths / weaknesses



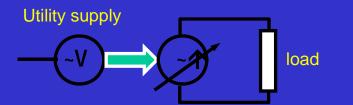
Semiconductors


Semiconductor characteristics determine ASD design & topology

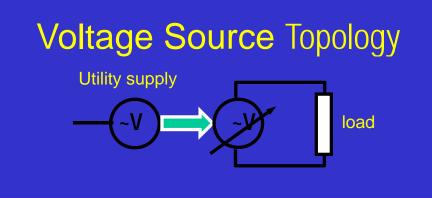
- Voltage and current ratings
 - # of devices
- Device utilization
 - Series or parallel
- Device FIT (failure in time) rate
 - Need for redundancy
- Device failure mode
 - Shorted or open
 - Rupturing or non-rupturing
- Switching Speed
 - PWM & other switching techniques
 - Size of ASDS



Slide 41 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014



Topology fundamentals: CSI & VSI



Current Source Topology

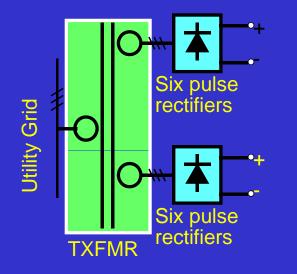
Active phase controlled or PWM rectifier Stiff current supply @ DC link

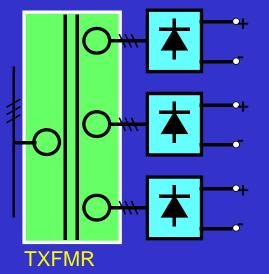
Passive or active phase controlled Stiff voltage supply @ DC link

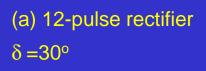
Passive Front End

- Typically a diode bridge
- Simple device
- Power factor 0.95 to 0.955

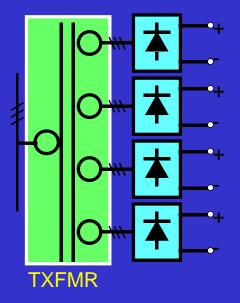
Active Front End


- Rectifier is a gated device
- Allows 4 quadrant operation
- Involves the use of SCRs,
 SGCTs or equivalent devices
- Power factor 0.98 to unity (VT)

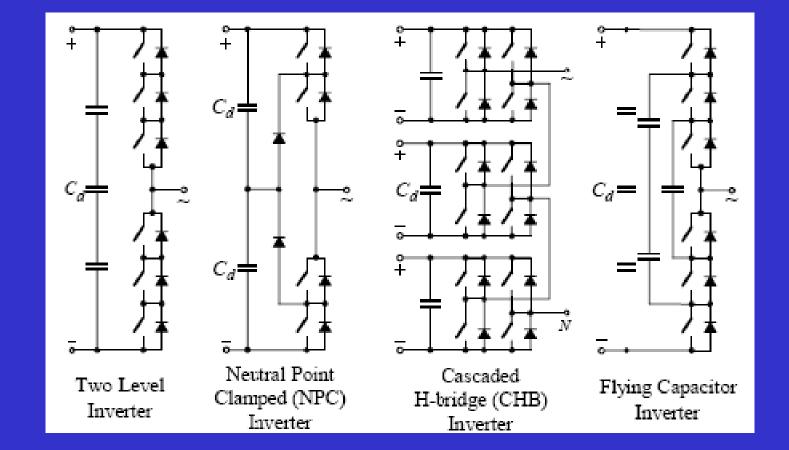

•Harmonic mitigation techniques by firing and regenerative braking are possible



Topology Fundamentals - Rectifier



(b) 18-pulse rectifier $\delta = 20^{\circ}$


(c) 24-pulse rectifier $\delta = 15^{\circ}$

Transformer is also used to deal with common mode voltage

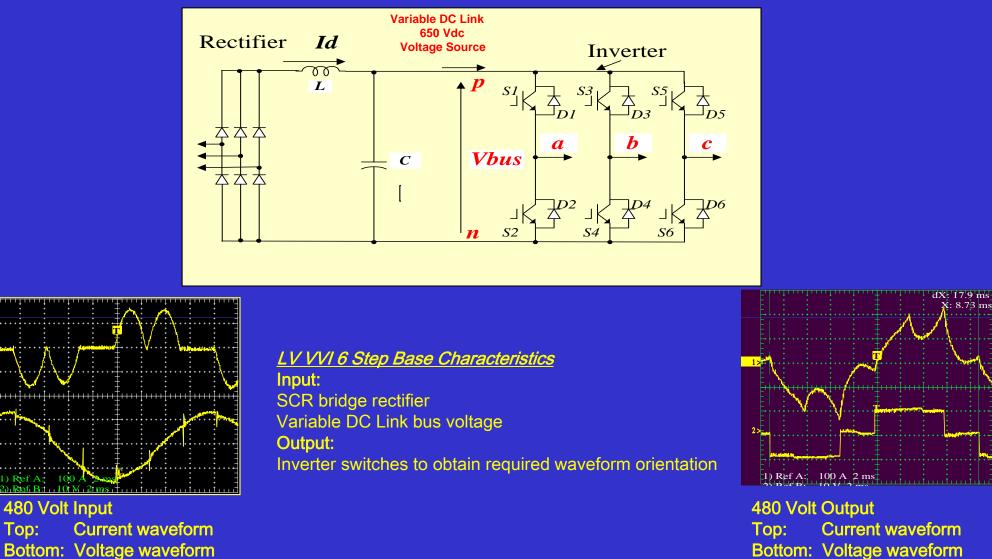
Topology Fundamentals - Inverters

• Higher output voltage w/o devices in series

Slide 45 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

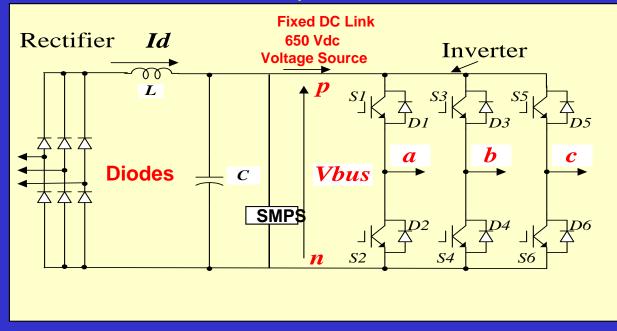
Variable Voltage Inverter (VVI)

Voltage Source Inverter (VSI – PWM)


Multilevel Voltage Source Inverter (MVSI)

Multilevel Voltage Source Cascaded H bridge (CHB)

Topology Fundamentals – Voltage Source Drives

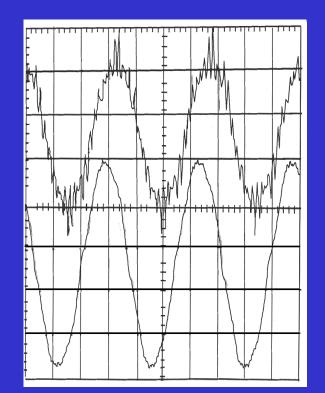

Slide 47 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

VSI – PWM 2 Level

6 Pulse Rectifier, DC Link capacitor & IGBT Inverter

LV VSI PWM 2 Level Base Characteristics

Input:

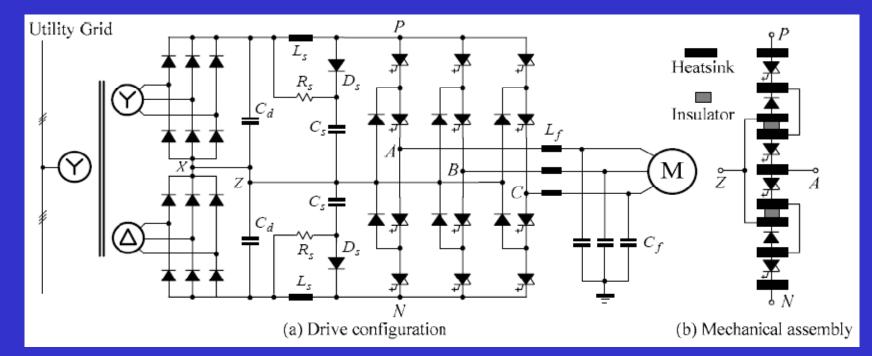

•Diode bridge rectifier typically 6 pulse

•Fixed DC Link bus voltage

Output:

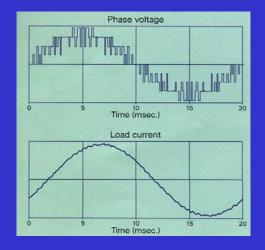
•PWM inverter switches @ high frequencies (2 – 10 kHz) to obtain required output voltage and harmonic elimination

Most common LV technique employed in industry presently

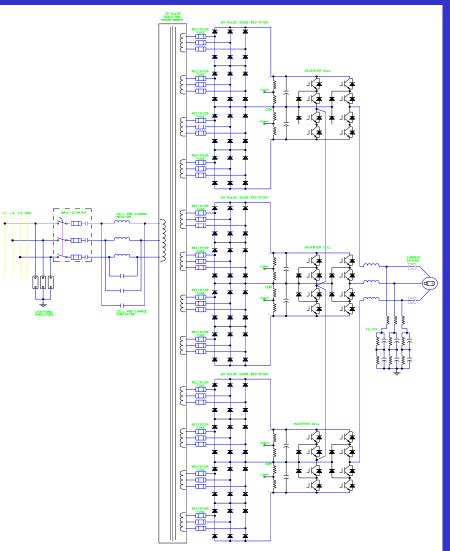


480 Volt Output Top: Current waveform Bottom: Voltage waveform

VSI – PWM 3 Level

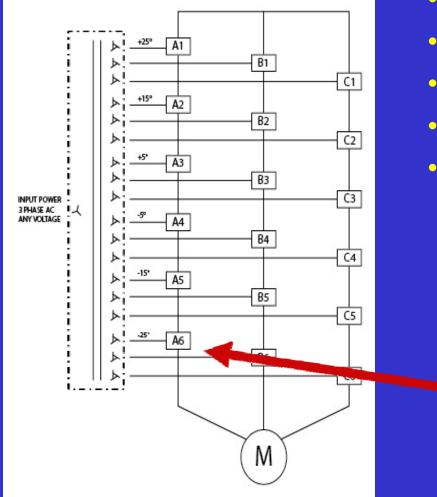

VSI-PWM 3 Level with Output Filter Topology

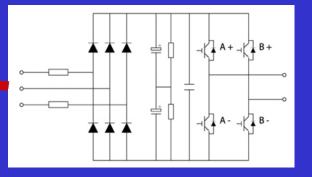
Tuned LC output Filter To reduce Voltage Stress design – motor specific 12 Pulse Rectifier 3 Level Neutral Point Clamp Inverter Medium Component Count GTO or IGCT Power Devices


VSI – PWM Multi-Level Inverter

VSI-PWM Multi Level – 5 Level shown

Medium to High Component count - 36 fuses, 84 diodes, 24 IEGTs, OP filter & reactor May require a new motor with up graded insulation system or output filter Cable length restrictions can be extended with use of output filter No option for device redundancy




VSI - Multi-Level Cascaded H Bridge

Multi-Level Cascaded H Bridge

- Low line THD
- Modular design
- Ideally suited for higher voltages 13.8 kV
- High component count fuses, devices
- Multi-winding close coupled isolation transformer

Slide 51 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

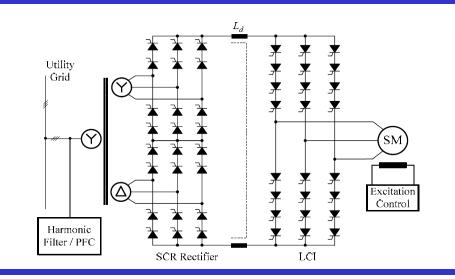
Load Commutated Inverter (LCI)

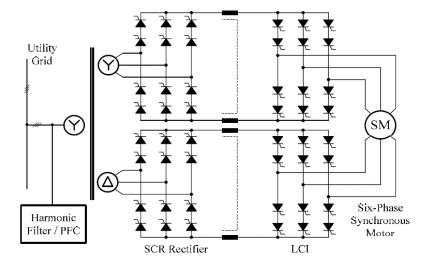
Capacitor Assisted Current Source Inverter (CACSI)

Current Source Inverter (CSI – PWM GTO) – 1989 to 2000

Current Source PWM Rectifier & PWM Inverter (CSI & CSR PWM)

- Introduced in 2000
- CMVE addition in 2004




CSI - LCI

Load Commutated Inverter (LCI)

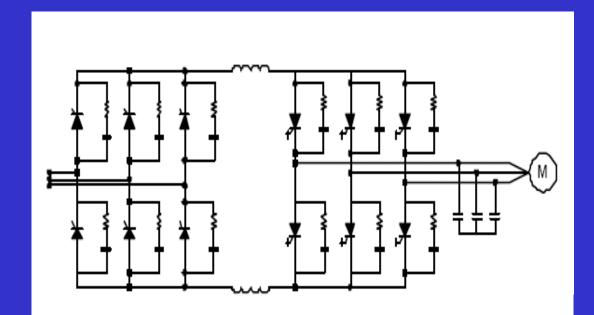
- Still in use
- Low cost, high efficiency, reliable, large ratings, regenerative braking
- 12 pulse rectifier and either a 6 or 12 pulse inverter
- Synchronous motor required
- High output torque pulsations, slower response and linear power factor with speed
- Typically requires HF / PFCC unit to address power factor and harmonics

CSI - CACSI

- Capacitor Assisted Current Source Inverter (CACSI)
- Introduced in late 70's early 80's
- SCR rectifier 6 or 12 pulse
- Large DC link inductor
- SCR inverter, a large output filter capacitor is required > 1 pu
- Capacitor assists the SCR commutation of the inverter at high speeds
- A crowbar or commutation circuit is used to commutate the SCRs of the inverter at low speed
- Limited effective speed range 30 to 60 hz
- No PWM techniques were employed
- Required HF / PFCC unit
- Many still in service

CSI - PWM

CSI-PWM - GTO

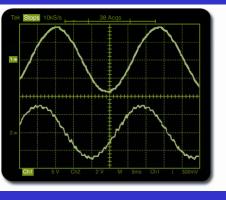

- Introduced in late 1980's
- SCR rectifier active front end
- DC link inductor (1.0 pu)
- GTO inverter (PWM firing)
- Output capacitor (0.4 0.6 pu)
- Rectifier choices
 - 6 pulse
 - (line reactor or iso txfmr)
 - 12 pulse (iso txfmr)
 - 18 pulse (iso txfmr)

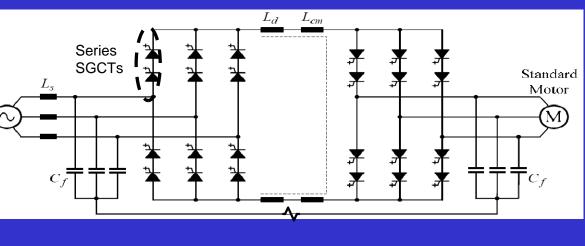
Inherently regenerative

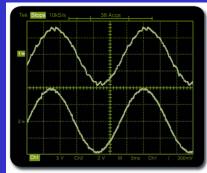
Simple topology

Durable design - fault tolerant

Line reactor version required motor insulation suitable to address CMV




CSI – PWM - CMVE



CSR+CSI with Common Mode Voltage Elimination

MV Input – 2.4 to 6.6 kV Top: Current waveform Bottom: Voltage waveform

MV Output – 2.4 to 6.6 kV Top: Current waveform Bottom: Voltage waveform

Introduced in 2000, CMVE addition in 2004

Does not require an isolation transformer

Inherent regenerative braking

Near-sinusoidal input & output voltage waveforms

Common mode voltage addressed within drive

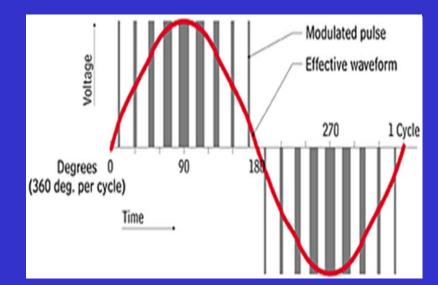
Simple power structure – High MTBF Low component count Commonality of parts – rectifier same component as inverter Virtually unlimited cable distances between drive and motor

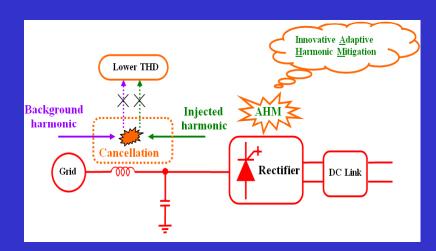
Industry News & Trends

- Increased use of ASDs
- Less Gas compression electrification
- Class H bridge patent expires April 2014
- Cooling minimize air conditioning
- New topologies AFE & transformer-less
- Cross pollination of topologies

Active Front End

Active Front End

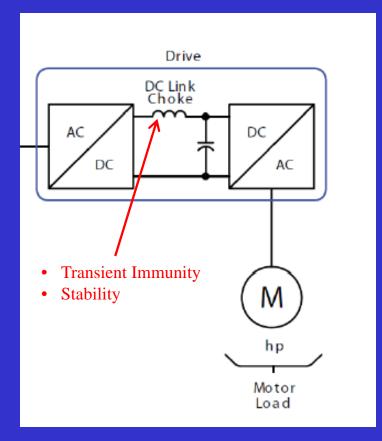

Several topologies which had been passive rectifiers are coming out with AFE options
Elimination of drive isolation transformer – reduction in associated losses, size and weight


Low AC input harmonics

- Pulse Width Modulation
- Selective Harmonic Elimination

Increased versatility

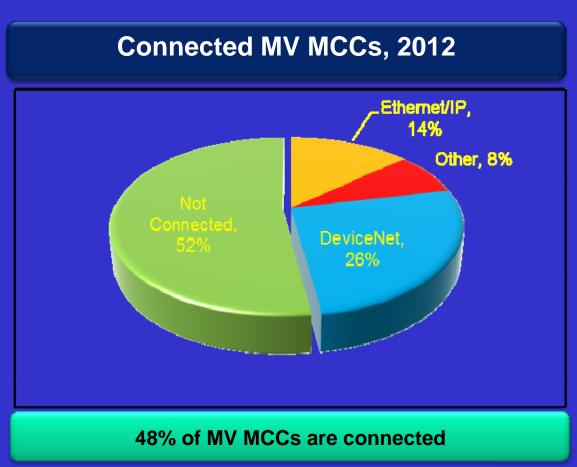
- 4 quadrant operation
- Protective gating strategies
- Active power factor control
- Possible active harmonic mitigation (future)



- Facets of different designs may improve performance of existing topologies
- Active Front End technology
- Introduction of inductors in capacitive DC link arrangements to improve transient immunity and ASD overall stability

Industry News & Trends

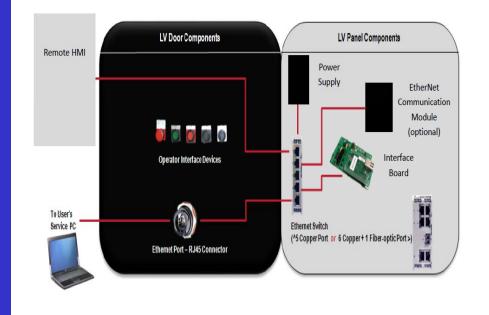
- More demand & extensive use of information
- Intelligence predictive maintenance drive and application
- Increased Connectivity
 - EtherNet
 - Remote Communications
 - Cloud Service
 - PLC integration ease of use
 - Block Instructions
 - Automatic Device Configuration
 - Integrated motion



Ethernet

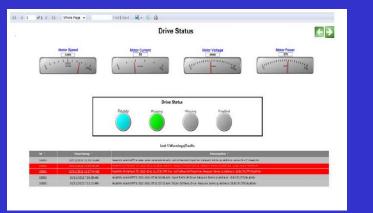
Percentage of MV MCCs that are connected to networks have increased from 30% to 48% in the last 3 years

Ethernet/IP is growing rapidly and displacing DeviceNet as the network of choice in MV MCCs

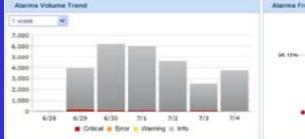


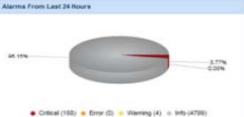
Remote HMI

- Remote HMI or PC either in addition to or instead of an HMI on the drive
- Ease of use
 - Information can be obtained and parameters / firmware changed without the need to go to the equipment
 - Reduces need for work permits
- Increased safety
 - Minimize the need and time in front of electrical equipment



Remote Monitoring


- Internet & Cloud enabled
- Access external service expertise either on an as needed or continuous monitoring basis
- Data Storage
 - Maintain key information more securely
- Security
 - Read only to obtain information & troubleshoot



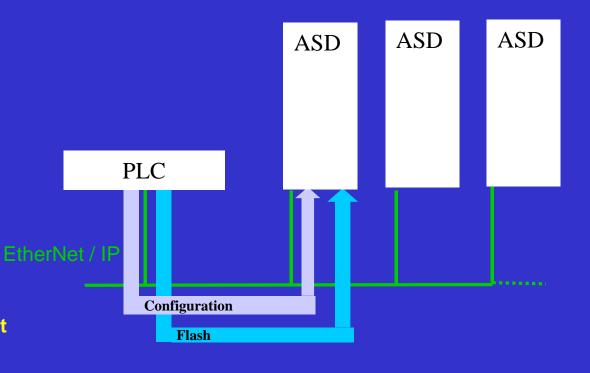
			Id 8	TimeStamp 1	Description 1
alarms_Name	ala	alarms_Timestamp	10001	7/16/2012 11:07:18 AM	<alarm> Fault TS:2012-07-16 11:07:18:910 Alm: DCInk Ov/Temp. Drive: Meguon Demo Ip Address: 10:91.76 1774/ALARM></alarm>
DCLnk OvrTemp	34	2012-07-16 11:24:16.416	10001		<alarm> Fault T5:2012-07-16 11:05:59.860 Alm: IsoTx/ReacOv/TmpDrive: Meguon Demo Ip Address: 10:91.76 177</alarm>
DCLnk OvrTemp	34	2012-07-16 11:07:18.930	10001	7/16/2012 10:10:50 AM	<alarm> Fault T5:2012-07-16 10:10:50:38 Alm: Adaptr1 ForceFitDrive: Mequon Demo Ip Address: 10:91.76.177</alarm>
IsoTx/ReacOvrTmp	33	2012-07-16 11:05:59.860	616	7/16/2012 10:10:11 AM	KALARMX Alaminigh TS 2012-07-16 10:10:11 6160100 Alm COMPRESSOR 111 HIGH VIBRATION ALARM Tag TAH_54853 PLC:MSRe.05
Adaptr1 ForceFit	26	2012-07-16 10:10:50.038	615	7/16/2012 10:09:54 AM	<alarm> AlarmOff TS 2012-07-16 10:09:54.8510100 Alm:COMPRESSOR BEARING HIGH TEMP TRIP Tag:TAHH_S4854 PLC.InSine.OSM:</alarm>
1					

14 2

Cloud historical alarms

Slide 63 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

Integration with PLC


Instruction blocks for intelligent devices – ASDs,

soft starters, etc.

Automatic address assignment & tagging Ramp rates Ease of use – time savings / accuracy

Automatic Device Configuration

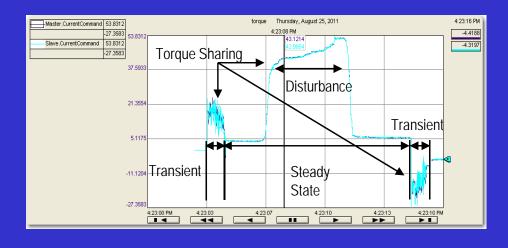
A PLC based feature that allows a user to configure their system to automatically download an intelligent device profile once established typically at time of replacement

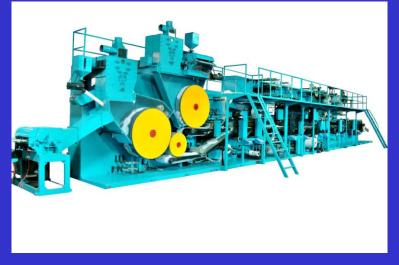
Integrated Motion

- EtherNet Enabled
- Synchronized motion
- "Electronic drive shaft"
- Equivalent to a process sequencer
- Improve troubleshooting
- Time date stamp events
- Correlate activities on the system

Meeting Conf Rm 2:00 pm Coordinates devices in a manner that's similar to our own methods for coordinating meetings and events

- All members (devices) have clocks to compare time to an absolute base and scale
- A destination (position) is targeted for the event
- A time (timestamp) is set for when the event shall occur
- A message is sent to each member (device) to meet at a given place at the pre-determined time


Integrated Motion



Machine / process synchronization

- Reduced equipment requirements
- Time stamped inputs
- Scheduled outputs
- Simplified code development

Tight coordination between ASDs / motors Process component integration High performance load sharing

Deviation is the command difference between the master and slave axes with 100 ns synchronization

Speed (rpm)	Deviation (deg)	Deviation (rev)
1000	0.0006	1.66667E-06
2000	0.0012	3.33333E-06
3000	0.0018	0.000005
4000	0.0024	6.66667E-06
5000	0.003	8.33333E-06
6000	0.0036	0.00001
7000	0.0042	1.16667E-05

Industry News & Trends

Integral motor protection

- Safety
 - Arc Flash / Arc Mitigation
 - SIL ratings
- Permanent Magnet

Arc Mitigation - ASD

Under discussion in IEEE 1566 WG Challenge is to determine the industry direction •Arc Resistant •Light Detection

•Other?

Slide 68 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

Functional Safety

- Safety Integrity Level (SIL) is defined as a relative level of riskreduction provided by a safety function, or to specify a target level of risk reduction.
- Detailed requirements:
 - Safe Torque Off per IEC 61800-5-2
 - Desired targets:
 - SIL 3 per IEC 61508, IEC 62061
 - Cat. 3, PL=e per ISO 13849-1
- Where might you see this?
 - Material Handling / Conveyors
 - Pipelines
 - Hoists, winders
 - Grindings Mills
 - Underground coal mines

Increased use of Permanent Magnet Machines

PMM Control:

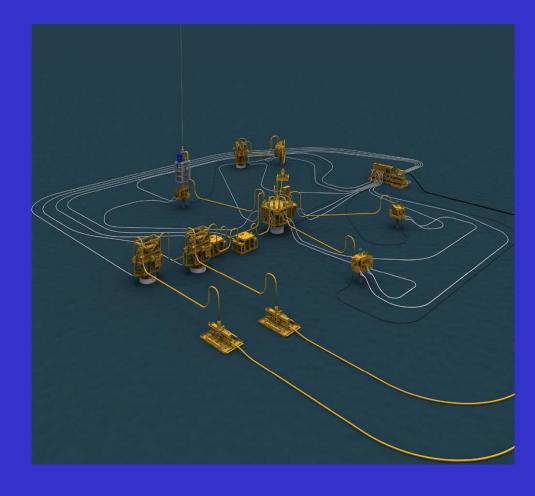
- Permanent Magnet Synchronous Motor Control
- Preferred solution for low speed applications:
- Marine
- Wind, current, and tidal alternative energy markets

Cutaway view of PM motor in wind turbine application

Industry News & Trends

- Role of Operations & Maintenance in decision making process
- Decline of Subject Matter Expertise
- Increased demand for services & support
 - Application Support
 - Field Support
 - Training
 - Electronic manuals
 - Electronic knowledge and product notification

New Frontier - Sub-Sea Application

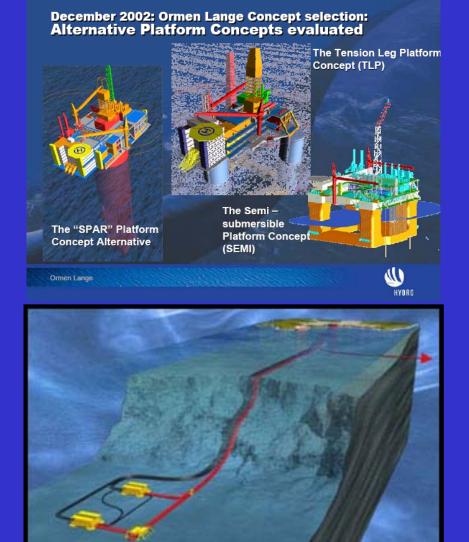

Current technology involves sea floor installation of boosting, separation and water injection systems along with transformers, power cables, connectors and penetrators needed to power these units

Typical applications

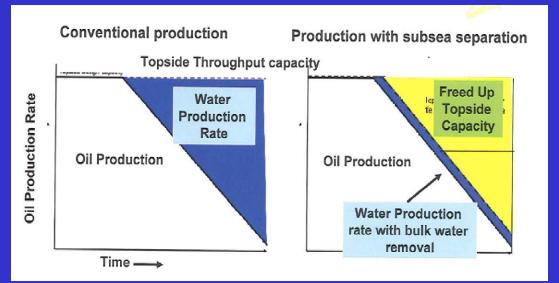
- Transfer & Injection Pumps
- Multi-Phase pumps
- Compressors
- Other processing equipment

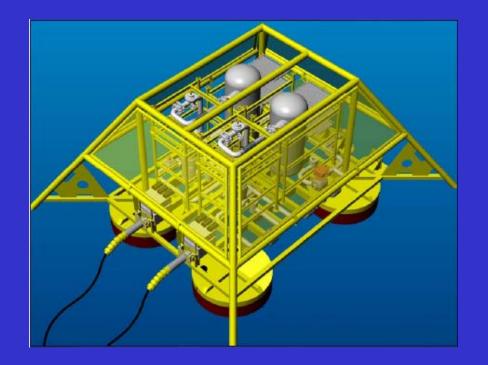
Environment

- Depth
 - 1500 to 4000 metres
- Temperature
 - -2 TO 4 degrees Celsius
- Pressure
 - 5689 psi / 392 bar 4000 metres
 - 0.4335 psi per 1 foot water depth



Advantages of Sub-Sea Approach


- Conventional Platform
 - \$1 billion estimated cost
 - Manned facility
 - 25,000 Metric tons
 - Large support infrastructure
 - Icebreaking required in artic
- Subsea Application
 - Unmanned
 - 20-25% increased recovery
 - 30-40% lower capital cost


- Reduction in well head pressure
- Maintain the same flow
- Avoid the need to take oil and inherent water to the surface for processing.
- Water eliminated sub-sea can be immediately re-injected to the field with minimal energy required in this direction as well
- Reduced power requirement
- Reduced system design

Designing for Subsea

Packaging

- Re-package of surface design
- One atmosphere or oil compensated
- Cost of and limitation of space and weight

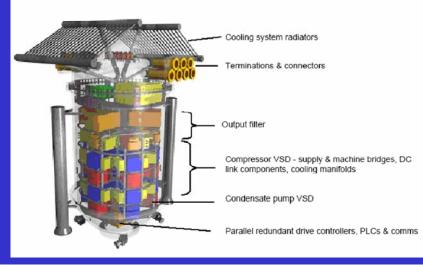
Limited accessibility

High cost & effort to access gear

High availability is critical

 Due to the expense and time required to access equipment, there must be increased focus on margins, reliability and testing

Service schedule


 Customers require / request > 5 years without the need to service

Adjustable Speed Drive Concepts

Initial concept Last update is that unit has passed shallow water testing One atmosphere approach Thick enclosure – high cost & weight Initial feedback is that one atmosphere approach not practical Not expected to be a long term solution to subsea ASDs Oil compensated approach needed

Subsea Study Group

- ISO/FDIS 13628-6:2006(E) Control
- IEEE Subsea Study group has been formed
- Development with dual-logo IEEE/IEC will be considered by the Study Group.
- Existing IEEE and other applicable industry and international standards will be reviewed
- Study Group Officers
 - Roy Jazowski Teledyne Chair
 - Stephen Lanier ExxonMobil Vice Chair
 - Min Zhou Shell Projects Secretary

Slide 77 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

Expanding Applications list

MV Drives Increasing capabilities

- Expanding markets by improving performance, features & benefits
- Power Factor improvement and control, VAR compensation
- Comprehensive protection package for drive and motor
- Permanent Magnet motor control
- Process flexibility
- Communication capabilities
 - Variety of protocols
 - Integrated, transparent diagnostics automatically recording key variables
 - Upgraded interface capabilities, incorporating manuals, drawings and diagnostics
- System type drive integration capabilities

Summary

Numerous benefits of MV Drives

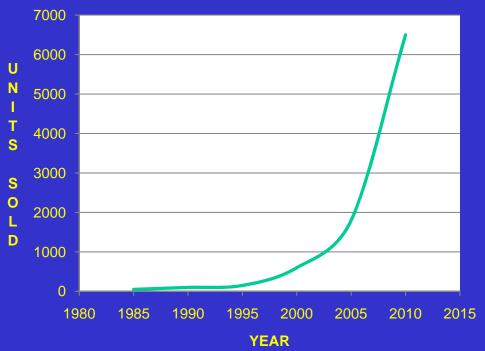
- Energy savings
- Reduced electrical and mechanical disturbances
- Enhanced process control
- Improved reliability

Future of MV Drives lies in

- Improving features and benefits
- Expanding drive use into more demanding applications
- Continued size and cost reductions
- High availability

Slide 80 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

ASD History



- ASDs have been used in process applications for some time since 70's
 - Improved process control
 - Efficiency & energy savings
 - Allow starting on weak power systems within utility constraints
 - Eliminate mechanical components valves, gearboxes, etc.
 - Reduce installation and maintenance costs
- Initially, as drives were new technology, the ASD was the project
- With more extensive usage, innovation in terms of ease of use and other factors have made this simpler so the focus becomes application and required performance
 - Efficiency, power factor, etc.

- While drives have been in use since the 1970's, usage has progressed nearly exponentially
- Currently a single manufacturer produces more drives in one year in one facility than the total demand in year 2000
- Northern Alberta represents perhaps the highest concentration in the world. Majority of drives are current source

MV DRIVE SALES

Reasons for increased usage

- Need to reduce energy costs
- Limited world wide electrical distribution
- Improve motor performance starting, dynamic
- Industry acceptance
- Environmental factors greenhouse gas emissions
- Technological improvements
 - Ease of design and use
 - Reduced footprint / ease of installation
 - ASD cost reductions \$\$ per horsepower
 - Reliability
 - Proven technology

- Baseline for a variety of drive topology choices + benefits
- Many technology options, fast changing
- Provides industry wide alignment of terminology and approach
- Useful for suppliers to monitor industry needs
- Need to define requirements and offering
- Ability to make effective comparisons

Topology is discussed primarily as a means for technical personnel to understand performance As can be seen, there are many variations in drive topologies

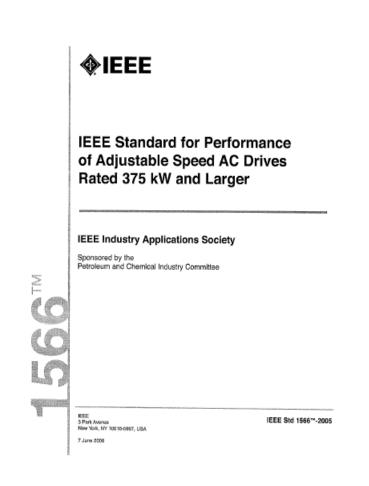
Important items for ASD users

- Availability MTBF / MTTR
- Product life 20 years
- Ease of use
- Maintenance
- Features
 - Regenerative braking
 - Communications / Connectivity

- Consolidates intent / requirements of various other standards
 - IEC, NEMA
- Eliminate confusion
- Reduce the time needed to define an application
- Guiding direction for first time system designers
- Reference for more experienced users

IEEE 1566 Objectives

- Stand alone document
- Specify performance rather than design
- Provide the required data sheets
- Reduce confusion
- Reflect industry trends & needs
- Leverage on experience of numerous users
- Not all items can be achieved immediately



IEEE STD. 1566 STANDARD FOR PERFORMANCE OF ASD AC DRIVES RATED 375 KW AND LARGER

Standard applies to ASD applications – induction and synchronous AC machines – > 375 kW (500 HP)

First release of the document June 2006 Culmination of 6 years of work Input provided and document written by IEEE members

- Enhanced Data Sheets
- Data Sheet Format Excel
- Data Sheet Guide
- Adjustments to voltage sag & ride-through
- Introduction of arc flash values to data sheets
- Long Cables
- Marine
- Generator Supply

IEEE 1566 Scope

AC Adjustable Speed Drive System

Safety **Availability** Enclosure Grounding Bonding **Component ratings** Load capability **Ride-through Harmonics** Controls **Design Margin**

Cooling Bypass Switchgear Transformer/reactor Motor System coordination Testing Commissioning Spares and support Data Sheets Engineering Studies

"An interconnected combination of equipment that provides a means of adjusting the speed of a mechanical load coupled to a motor" **AC Input** Fixed Frequency, Fixed Voltage Input Input AC-DC DC-AC Output Switching Motor Impedance Conversion Conversion Filter Device AC Output; Harmonic Adjustable Frequency, Filter / Capacitor **Adjustable Voltage** PFCC or Unit Inductor **DC** Link

Slide 91 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

Enclosure and Safety

- Drive shall not pose a risk of fire, electric shock, or injury
- Minimum IP21 enclosure
- Withstand all normal mechanical and environmental stresses due to handling and installation
- Prevent access to live parts
- Confine a bolted fault at the available short circuit energy
- Visible isolating means
- Suitable warning labels
- Capacitor discharge
- Arc Mitigation

Drive Topology

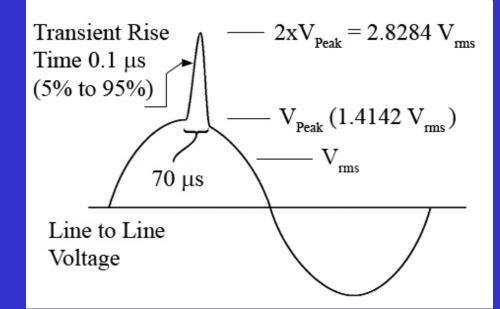
- Design requirements and performance rather than specific converter topology
- Power components conservatively rated
- Redundancy (N+1) is discussed as an option
- Replaceable components to be removable by no more than two people
- Isolation between power and control

Performance

- Accelerate / full output power with input voltages between 90% and 110% of nominal
- 110% motor full load current continuously margin or contingency
- Optional variations, High Starting Torque?
- Short time overload capacity of extra 10%
 - 120% of motor FLC for 1 minute in every 10
- Will reduce the need for drive upgrades and give a more durable drive

Input Tolerance

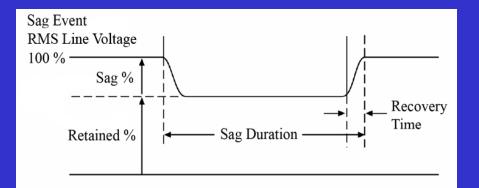
- Transient Voltages
 - Reliable operation with occasional input transients
- Flying Restart after 100% power loss of at least two seconds
- Voltage Sags



Voltage Transient

ASD System shall operate reliably and without interruption when

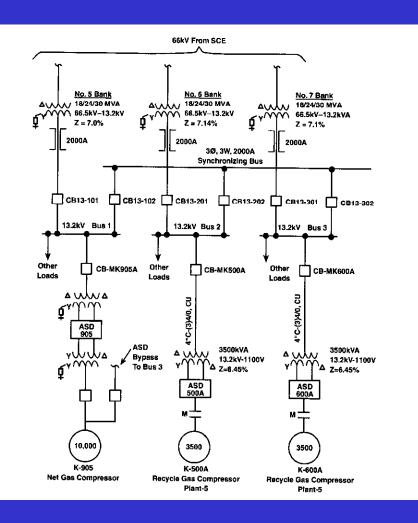
- Input power supply over-voltage transients of 2.8 times the nominal rms
- Rise time of 0.1 μ s
- Base width of 70 μ s



Voltage Sag

Maintain motor control during three-phase input power supply loss

Voltage sag to 65% of nominal on one or more phases for a duration of 500 ms


Harmonics and noise immunity

IEEE Std 519 is used as the default harmonic generation standard Items to be specified by user

- Telephone interference level
- Point of Common Coupling
- Extra requirements

Acceptable levels of Electromagnetic Interference and Radio Frequency Interference are also specified

Control

- Various control and communication options
- Defines requirements for local/ remote operation
- Alarm and fault diagnostics, first out report sequence
- Non volatile alarm and shutdown data
- Trending and troubleshooting requirements
- All data available on digital link
- Include all required software and interface devices
- Alarm and shutdown indications by both NC and NO contacts wired to individual terminals
- Skip frequencies
- Loss of speed reference signal user selectable action
 - Maintain speed
 - Stop
 - Go to predefined speed level

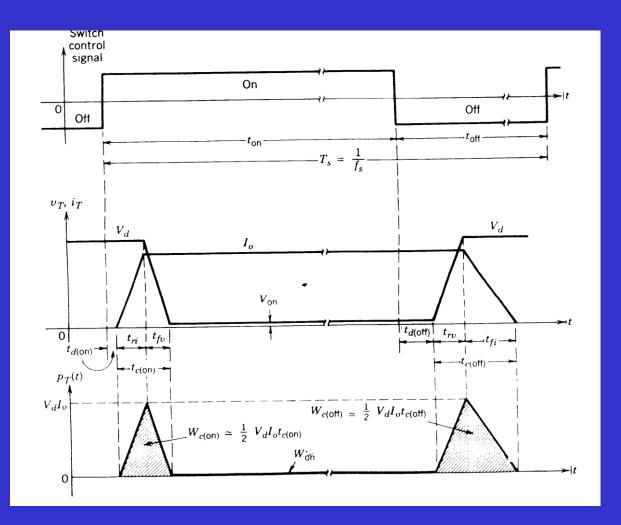
Bypass Operation

- Transfer motor between drive and utility, and back again
- Useful for starting duty (speed control not required) or approach to operational redundancy
- Must consider whether maintenance / repair can be performed on drive
- Multiple motors, one drive
- Various options available

Input impedance Transformer / reactor

- Coordinated Component of the System
- ANSI standards
- Harmonic requirements
- Isolation, Phase shift
- Reduce Fault Levels
- Indoor or Outdoor

Cooling



- Air or Liquid Cooling
- Redundancy optional on fans, required on pumps
- Single failure alarms; Second failure shuts down
- Alarms and shutdowns for heat sink over-temperature.
- Fans / pumps automatically switch a minimum of every 30 days without requiring a shutdown
- L10 bearing life of at least 50 000 hours.

DEVICE LOSSES

Slide 103 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

Switchgear & starters

Should be included in ASD supplier scope

Mechanical and electrical interlocking to be defined by ASD supplier if not in scope

Applicable ANSI/IEEE standards are referenced

Slide 104 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

Motor

- API 541 (Induction) and API 546 (Synchronous)
- Diamond Bullets in API
- Effect of harmonics, voltage stresses long motor life
- NEMA MG-1 Sections 30 and 31 has useful data

Slide 105 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

Motor

- Consider effect of reduced cooling at lower operating speeds
- Synchronous machines field excitation
- Hazardous Locations

Documentation

Drawings must conform to local requirements

• Symbols, etc.

Typical approval process described

Final documentation

- Storage and maintenance instructions
- Operating instructions
- Project drawings
- Complete list of renewal parts
- Recommended spare parts
- Test reports
- System studies

System design shall provide

- 20 year service life
- 5 year continuous operation
 - L10 life on cooling fan of 5 years +
 - Identify any redundancy requirements
- 20 year service life plan should be available
 - Spare parts identify components requiring replacement over 20 years
 - Training
 - Service support
 - Provide expected MTBF and MTTR

There may be a point where replacement with new technology is more practical

- DRIVES INCREASE HEAT GENERATION SLIGHTLY (HARMONICS ON ROTOR)
- HEAT DISSIPATION FROM SHAFT MOUNTED FANS IS REDUCED AT LOWER SPEEDS
- CAN GIVE SLIGHT ROTOR TEMPERATURE
 INCREASE
- AVAILABLE DATA SHOWS SELDOM A CONCERN
- IEEE 1349 HAS EXTRA DATA

HAZARDOUS LOCATIONS AND VOLTAGES

- ALL DRIVES GENERATE "COMMON MODE VOLTAGE" (CMV) TO SOME EXTENT
- NEUTRAL POINT IS DISPLACED FROM ZERO
- MAGNITUDE DEPENDS ON DRIVE TOPOLOGY
- STATOR WINDING VOLTAGES ARE DISPLACED FROM ZERO
- THE ROTOR BUILDS UP A CHARGE TYPICALLY ABOUT 10% OF STATOR CMV (DEPENDS ON MOTOR CONFIGURATION)
- ENERGY STORED ON ROTOR

ROTOR ENERGY

ROTOR CAPACITANCE TO FRAME **C** ROTOR VOLTAGE **V**

ENERGY $-\frac{1}{2}$ CV²

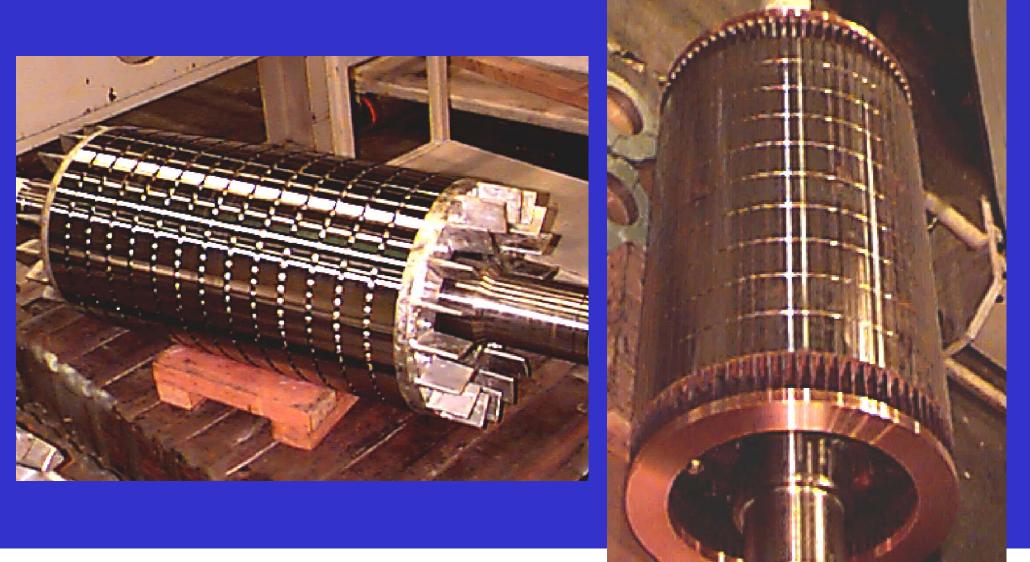
CAN IT IGNITE EXPLOSIVE MIXTURES?

Slide 111 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

Copper Bars Rather Than Aluminum "Open" Construction **Higher Number Of Poles Optimize Rotor Bar Shape For** Inverter **Ducted Rotor** Low Slip

Slide 112 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

Reducing Rotor Temperatures Slot Shape for Inverter Power



Slide 113 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

Ducted / Copper Bar rotor

Slide 114 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

Ignition Temperatures

Methane	537°C
Ethane	472°C
Propane	432°C
Hydrogen	429°C
Acetylene	305°C
Butane	287°C

Gasoline	280°C
H ₂ S	260°C
Pentane	260°C
Hexane 223°C	
Octane 206°C	
Heptane	204°C

Slide 115 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

Common Mode Voltages

CMV Is a Natural Consequence of Inverter Switching All Inverter Topologies Produce CMV To Some Extent May Be As High As 4400 Volts (Peak Neutral to Ground on 4160 V_{rms} System) "CMV Mitigation" Can Be Employed by a Variety of Means

CALCULATION OF ELECTROSTATIC ENERGY STORED IN ROTOR

NOTES

ROTOR TO FRAME CAPACITANCE:				
Rotor Length:	1.00	meters	1.0 meter = 39.37 in	
Rotor Diameter:	1.00	meters		
Air Gap:	0.01	meters		
CAPACITANCE:	2.7789E-09	Farad		
	0.0027789	Microfarad		
BEARING CAPACITANCE	S:			
Babbit Length	0.0635	meters		
Journal Diameter	0.1524	meters		
Bearing Clearance	0.0001524	meters		
			Takes Oil as 4.0	
		Fored per beering		
			(Typically 2.5)	
TOTAL CAPACITANCE:				
PEAK MEASURED	0.016895712	Microtarad		
	5	Volt		
COMMON MIEs				
Butane	250	Microioules		
Methane	280	$(e^{-i\phi}e^{-i\phi$		
Pentane	280			
Ethane	240			
Propane	250			
Acetylene	17			
Hydrogen	18			
CAPACITANCE:2.7789E-09 Farad 0.0027789 MicrofaradBEARING CAPACITANCE:Babbit Length0.0635 metersJournal Diameter0.1524 metersBearing Clearance0.0001524 metersBearing Clearance0.0001524 metersCAPACITANCE:7.05841E-09 Farad per bearing 0.016895712 MicrofaradCAPACITANCE:1.68957E-08 Farad 0.016895712 MicrofaradPEAK MEASURED SHAFT VOLTAGE:5 VoltSTORED ENERGY2.11196E-07 Joules 0.2111964 MicrojoulesCOMMON MIES200Butane280Pentane280Pentane280Pentane280Propane250Acetylene17				

- Thorough Factory Testing is Vital
- Burn in Devices
- Hipot
- Full Current and Voltage Heat Run
- Test all Auxiliaries
- Test Motor Separately, and on Drive where Practical

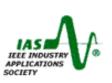
Annexes

Annex A - Purchaser Data Sheet Annex B - Manufacturer Data Sheet Annex C - Data Sheet Guide Annex D & E - Informative • Engineering Studies - D • Bibliography - E Essential that A & B information must

be exchanged during the course of a project

IEEE Standard for Performance of Adjustable Speed AC	Drives Rated 375 kW and Larger
Annex A	
(normative)	
Technical data sheet (to be completed by the	purchaser)
Project Reference: Spec. Reference:	Date:
System of units: SI SI Dus U.S. standard	
Power System One-Line Diagram Provided: 🗌 Yes 🗌 N	No
Details:	
Supply system voltage:	
2400 V 3300 V 4160 V 6900 V 1380	00 V □ Other: V +/%
Short circuit level: MVA Line frequency:	🗋 60 Hz 🔲 50 Hz
	whone influence (I.T) at PCC
Ground fault detection provided in upstream switchgear:	'es 🔲 No
ASD Auxiliary Three-Phase Power	
60 Hz: 208 V 480 V 575 V 0 Other Control Power: From input UPS Battery UPS or battery supplied by: Vendor Purchaser	
Load/Application Requirements	
Type of load: 🗌 Fan 📄 Pump 📄 Other	
Torque profile: Variable Constant Other	
Gearbox ratio:	
Motor speed range: r/min to r/min	
Man hand a second hill at a fasta	
Max load power kW at r/min Load torque/Speed curve provided	

HOW TO ORDER A DRIVE


- ANALYZE THE REQUIREMENTS
- DECIDE WHAT IS NEEDED
- USE A STANDARD (IEEE 1566)
- COMPLETE THE PURCHASER DATA SHEETS
- **REVIEW THE VENDOR RESPONSES**
- WORK OUT DETAILS
- MAINTAIN COMMUNICATIONS
- TEST THOROUGHLY
- INSTALL AND START UP

Use a Specification IEEE 1566 Complete the Data Sheet!

Slide 121 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

Check That You Get What You Need

Review Vendor's Data Sheet Ask Questions Test at Factory Test at Site

Train the Owner's People Do a Thorough Startup

Slide 123 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

PURCHASER DATA SHEETS VENDOR DATA SHEETS DATA SHEET GUIDE

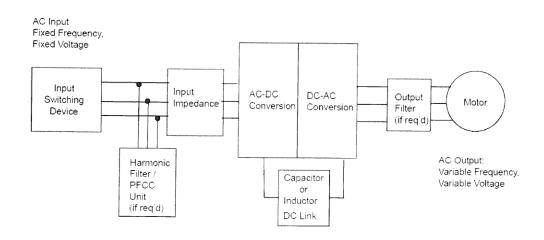
Slide 124 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

	SIEEE (Issued for use by:	SI	heet 1 of 3	DOCUMENT NO.	Rev.
Γ	IEEE 1566 - MEDIUM VOLTAGE ADJUST	ABLE	SPEED DRIV	*	<u> </u>
JO	B NO. D ITEM / TAS NO 0				
P١	RCHASE ORDER NO				
	Q. / SPEC, NO. 0				
	VISION NO. 0 DATE 6/15/2013 BY				
E					
	Applicable To: Proposal Purphase Applicable To: Parta SHEET NOLCATES INFO. TO BE T	s buit o ee or			
2	NOTE: O DATA SHEET O INDICATES INFO. TO BE TO				
1		compl	leted by the manuf	acturer	
			Enclosure (4.2.1):		
5	talestaring costs			Other, Specifi	
e			Gland Plate Locatio		
7			-	ver Cable Top 5ottom	
8			Size	Number per Phase	
ę	sparvotagv Caparvotag	v		Top Eattorn	
10				Number per Phase	
11	I nic tash independency based on maximum and minimum MVA is	evel		al top Bottom fanufacturing Ctd As Opedified	
12				uts de Colour.	
13				nside Colour	
14	Drive Output Cabinecabon?		Rear access	equred: Yes No	
15			Drive weicht	kg	I
16	Supply system voltage (s. t)		Drive dimensi		
17	2450V 3305V 4163V 6656 V 13805 V				
15	OtherV ±%		Rectifier (5.4):		
19			Pulse number. 🗌 6	□ ·2 □ 13 □ 24 □ 30	
20				ther	
21			- A	clive front end (PWM rectfler)	
22			Power sem conduct:		
23	53Hz: 400V OtherV		🗌 sor 🗌 sg	07 🗌 Diode 🗋 IGST 🗌 Other	
24	Capacity Required Contra		Peak riverse v	o tage ratiV	
25	Capacity Required Fan(skVA		Average curre	nt ratingA	
28				fer swaaring devic	
27		- 1		Oing a Cided 💭 Double Cided	
29	If Yes, to be powered by owner's MC Yes No	- 1		fer power fus	
30	Capacity (6.3):			A Strating A	
31		- 1	plecualde olic	ut?: 🛄 Yes 🛄 No 📋 Not Approacle	
32	Continuous capacity at 40 °C amblerkW 1 min overload capacity at 40 °C ambleA evenymin		BC Link Classick in a		
33	Maximum continuous voitakV		DC Link Circuit (5.5	1.	
34	KV		For inclusion Opecify winding mate	r -	
35	Acoustic Noise Level (\$.17 05:A)		Alr-core		
38	GP(.7)	1	DO Link Inductor	0.0215	
37	ASD Supply Voltage Ridethrough (6.18)			External to AGD Non-saturable	
35	Ride-througi cycles		Diff dual winds	ts type Cother	
32	Input surge protection tyr			cement frequency (6years	
40			Total # of do bus cap:		
41	Reilability (1.3, 13.6):			acement frequeyears	
	ASD MTBF:			/	
	ASD MTTR:		Inverter (5.6):		
	ASD is suitable for a minimum of five years of continuous operation .	(1.3)	Power semiconductor		
45	Yes No		🗌 30F. 🗌 3GG	T Diode IG5T Coner	
	Cther			ktage ratneV	_
47	Switching device replacement tminutes			state ourreA	
	Availability%			er switching devic	
42			Cooling	Dingle Sided Double Sided	

٢	Issued for use by:	Sheet 1 of 3	DOCUMENT NO.	Rev.	
	IEEE 1566 - MEDIUM VOLTAGE ADJUS	STABLE SPEED DRIV	/ES ELECTRICAL DATA SHI	EET	
JOB N	NO. ITEM / TAG NO.				
'URC	HASE ORDER NO.				
EQ. /	/ SPEC. NO.				
EVIS	DATE 6/15/2013 BY				
1 F	FOR/USER	EQUIPMENT			
2 5	SITE/LOCATION	MANUFACTURER			
3 F	REFERENCE SLD	SUPPLIER PROJECT I	SUPPLIER PROJECT NO.		
		As built TO BE COMPLETED BY MANUFACTURER			
		To be completed by the pure	chaser		
	System of Units: SI SI SI plus US standard	Harmonics (6.2, 6.1	5):		
7 8 S) No	
9	Supply System Voltage (6.1, 6.6):	Point of common cou		V	
10	Other: V ± %		influence (I.T) at PCC		
11 s	Short Circuit Level (Max) MVA at PCC at drive	Average Demand Cu Other harmonic requ			
12	Line Frequency: 60Hz 50Hz	Harmonic Complianc			
13 SI	Short Circuit Level (Min): MVA at PCC at drive	Harmonic Complianc	\sim		
4	Line Frequency: 60Hz 50Hz		above, state voltage THD requirement at PC		
	hort Circuit Level at Drive Input for Arc Flash Energy Calculations:				
6	Maximum MVA Minimum MVA Duration:	ms System Grounding	(6.5):		
	SD Auxiliary Three-Phase Power (6.1):	System Ground meth	nod: O Solid Resistance at: A		
19 60	0Hz·	Ground fault detection	n provided in upstream switchgear Yes	No	

IE API SOC

Slide 126 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014



(informative)

Technical Data Sheet Guide

This guide is designed to assist purchasers in specifying large adjustable speed drives for process applications. It does not cover all situations and should not be followed blindly. Corporate or local requirements may supersede some of the guidance listed here.

General: The system covered by this standard and data sheet comprises the equipment shown in the block diagram below. Not all the components shown below are relevant in each case, and some auxiliary devices such as fans and cooling water pumps are not shown.

Project Reference, Date: The data sheet may go through a number of revisions as project requirements change and vendor discussions indicate different requirements may be better for the purpose. Update the Reference and the Date as the sheets are revised.

Reference SLD: The vendor needs to know as much as possible about the power system feeding the ASD as this will affect the drive's performance. Early in a project, details of the power system are not always finalized, but the vendor should be given as much information as possible so that they can make an accurate proposal. As well as the SLD, supply any extra details that may be available, such as information on other loads on the system.

System of units: The standard permits either the SI (meters, kilograms, kilowatts etc.) system of units to be used alone, or the SI system plus the U.S. standard (inches, pounds, horsepower etc.) system. The selection is usually based on the system in use at the location.

 Supply System Voltage:
 Some common bus voltages are listed here, but other

 voltages may be listed. Note that the expected normal variation in supply voltage should also be listed as
 the drive performance is affected by the level of input voltage, for example supplying full power at a

IEEE 1566 DATA SHEETS

VENDOR DATA SHEET

REVIEW THIS!

Slide 128 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

DATA SHEETS

ESSENTIAL FOR GETTING WHAT YOU NEED WITHOUT CONFUSION

COMMUNICATION!

Slide 129 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014

TEST THOROUGHLY

- COMPLETE FACTORY TESTS
- SOLVE PROBLEMS IN THE FACTORY RATHER
 THAN ON SITE
- LOAD TEST
- CONTROL TESTS
- AUXILIARIES
- THOROUGH STARTUP
- TRAIN PEOPLE
- MAINTAIN PROPERLY

Summary

- Adjustable Speed Drives have become common place
- Increased use is due to the need for energy savings and other benefits which these controllers bring to all industries and a wide variety of applications
- Numerous drive choices currently in the marketplace
- IEEE 1566 has been created to assist users in specifying equipment on the basis of performance
- Recommend that you become familiar with this standard
- Standard must use the data sheets
- IEEE 1566 is a living document which is reviewed and updated regularly
 - Must be maintained by users through IEEE
 - Get involved

WHATS NEW IN MV DRIVES

THANK YOU

Slide 132 / What's New with MV Drives & IEEE 1566 - IEEE SAS & NCS 2014