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What is Artificial Intelligence?

Artificial Intelligence (AI) has recently emerged as a science 
even though it may still be considered in its early stages of 
development. 
Depending on the goals and methods employed in 
research, its definition varies. As a broad description, it 
may be described as the science of making machines do 
things that would require intelligence if done by humans.



AI applications are now being considered in a very wide 
variety of disciplines, ranging from humanities to natural and 
applied sciences. In the context of power systems, application 
of artificial neural networks (ANNs) and fuzzy logic is 
commonly referred to in the literature as AI applications in 
power systems.

Over the past 25 years or so, feasibility of the application of AI 
for a variety of topics in power systems has been explored by 
a number of investigators. Topics explored vary from load 
forecast to real-time control and protection, and even 
maintenance.



Artificial Neural Networks



Natural Nerve Cell



Artificial Nerve Cell



Networks Based on Artificial Nerve Cell Model

- Multi-layer feed-forward 

perceptron

- Recurrent

- Radial basis function

- Adaline

- Bayesian

- Hopfield

- Boltzman

- Kohonen

- Generalized Regression network



Types of Neuron Models 

•Artificial Neuron Cell Model

•Multiplicative neuron

Reacts to product of activation of pairs of 
synapses

•Generalized neuron

Contains both summation and aggregation 
functions with sigmoid and Gaussian activation 
functions
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Training of Neural Networks

Neural networks need to be trained. Based on the type 
of  network, it may be:

• Supervised learning

•Unsupervised learning

•Competitive

Although most networks are trained off-line using 
available data, in some cases the weights can be up-
dated on-line in real-time to track the system operating 
conditions.



Neural Network Controllers

Copying an existing controller with a network.
Inverse plant modeling using a network.

Back propagating through a forward model of the plant.



Bayesian Networks

A Bayesian network (BN), also known as a Bayesian belief network, is a 

graphical model for probabilistic relationships among a set of variables. 

They have a qualitative component represented by the network 

structure and a quantitative component represented by the assignment 

of the conditional probability (CP) distributions to the nodes of the 

network.

BNs can learn from observations. Learning of BNs can be parameter 

learning and structure learning. With parameter learning, the structure 

of the BN is given and only the CP parameters are learned. With 

structure learning, the BN structure itself is learned. Bayesian learning 

calculates the probability of each of the hypotheses given the data.   



Insulation Deterioration Estimation of a Transformer 

Using a Bayesian Network



Insulation LoL estimation by BN versus other methods for unit #64



Classical Direct Torque Control of an Induction 
Motor
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ANN Based DTC of an Induction Motor
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PI-DTC versus ANN-SMC-DTC
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Block Diagram of an Adaptive Controller



Controller Structure with MLFF NNs



Neuro-Adaptive PSS

Table 1:Dynamic Stability Margin* for Different Stabilizers.

* Dynamic Stability Margin is defined as the maximum power output at which the generator loses 
synchronism while input torque reference is gradually increased

Response to a three phase 
to ground fault, p=0.7 pu, 
pf=0.62

OPEN CPSS NAPSS

Maximum Power 2.65 pu 3.35 pu 3.60 pu

Maximum Rotor Angle 1.55 rad 2.14 rad 2.36 rad



ADALINE Network as an Identifier



Radial Basis Function Network



RBF-Identifier & Pole-Shifting Controller



Stability Margin Test

APSS CPSS APSS



Experimental Power System Model
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Performance of GN identifier

Results of GN identification for a 3-Phase to Ground fault at generator bus for 100 ms at P=0.7, Q=0.3 (lag). 

Experimental Results of GN identification under 23 % step change in torque reference and trained on-line.
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Performance of GNPSS and GNAPSS under three phase to ground fault for 100ms at the middle of one line in a double 

circuit system at P=0.7pu and Q=0.3 pu (lag) .

Performance of GNPSS and GN based adaptive PSS when one line is removed at  0.5 sec.  and re-energized at 5.5 sec and 

then again same line is removed at 10.5 sec. and re-energized at 15.5 sec. at P=0.8 pu and Q=0.4 pu (leading).



Fuzzy Logic
General Concept



Fuzzy Logic Membership Functions
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Examples of Membership Functions distributions
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Fuzzy Rules Table

We

NB NM Z PM PB

∆We

NB NB NB NB Z Z

NM NM NB NS Z Z

Z NS NS Z PS PS

PM Z PS PM PM PM

PB Z PM PB PB PB



Conventional and Fuzzy PID Algorithm



Fuzzy Logic Self-tuning PI Algorithm 



Hybrid Micro-Grid Configuration 
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Dump Load Frequency Control 

Fuzzy IF-THEN
Inference engine

Δf

dΔf
dt

ΔP
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DL frequency control

Previous fuzzy frequency 
control

[4]

Proposed fuzzy 
controller

1 Large membership functions reduce the regulation time

2 Small membership functions reduce oscillations around settling point
24/42



HPS Turbine Mode Controller

Simulink Fuzzy PID Controller Model

Linear Fuzzy PID Controller Non-Linear Fuzzy PID Controller



HPS Pumping Mode Controller

Simulink Fuzzy Logic Controller Schematic

Fuzzy Logic Controller  
Control Surface



Generator Loads

Power system diagram including SVC 

Device

SVC

Transmission Lines
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Proposed Solution

Proposed adaptive control system structure for SVC device 

In a SMIB system
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Single Machine Infinite Bus System  Simulation 
Results
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Example of membership function before and after adaptation
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Multi-machine System Simulation Results
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Sensorless Control of a Switched Reluctance 
Machine



Fuzzy Logic Controller for SRM



Speed Tracking SRM
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Estimated and Real Load Torque SRM
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Permanent Magnet Synchronous Generator WECS 



Field Oriented Control of Stator Side 
Converter of PMSG

•D-Q components of the stator reference voltages, that 
ultimately control the rectifier firing angle, are generated 
by two PI controllers with d-q components of the stator 
currents as inputs.

•Conventional PI controllers are replaced by trained ANFIS 
with d-q axes stator currents error and integral of error 
as inputs. 

• Applied to a 1.5 MW wind turbine system with PMSG
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Fig. 6 Fuzzy sets for input variable



Two Area Power System for LFC  
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Frequency variation of area- 2 in a Two Area Thermal 
System without Reheat unit when disturbance in area - 1
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Short Term Load Forecast
• Statistical methods
• AI based methods employing both neural networks and fuzzy logic
- Neural networks need to be trained
- Using heuristic optimization techniques, e.g. GA, that employ 

random search and fuzzy rules to guide search, performance can be 
improved.

- A generalized neural network (GNN) with four wavelet components 
of the historic load data as input and fuzzy logic guided random 
search GA as a learning tool for the GNN is used for short term load 
forecast. 

- RMS error with: 
back propagation training – 0.0610 GAF training – 0.0486





Short Term Load Forecast with FL and GNN
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Self-Tuning Load Forecast using GNN-W-GAF
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Supervisory Control of a Cogeneration Plant



Generator Fuzzy Set-Point Control





Fuzzy Logic Self-Tuning PI Controller



Fuzzy Adaptive Control PSS

RLS identifier and a self-learning Mamdani fuzzy logic controller.
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Results

0.1 p.u. step increase in torque and 
return to initial condition

(power 0.30 p.u., 0.9 pf lead)

3 phase to ground fault at the middle of one 
transmission line and successful re-closure

-adaptive Mamdani fuzzy logic PSS (AMFLPSS

----fixed centers FLPSS 

(power 0.9 p.u., 0.9 pf lag)



Adaptive Neuro-Fuzzy Inference System



General Schematic of ANFIS

Basic structure of a typical ANFIS with two inputs and two-rule fuzzy system 



Adaptive Neuro Fuzzy Inference System

• An ANFIS is an integration of neural networks and fuzzy 
inference systems to determine the parameters of the 
fuzzy system.

• Automatically realize the fuzzy system by using the neural 
network methods.

• Fuzzy Sugeno models are involved in the framework of 
adaptive system to facilitate learning and adaptation.

• Permit combination of numerical and linguistic data.

• Requires structural and parameter learning algorithms.  



The Proposed Adaptive Neuro-Identifier

• A Multilayer Perceptron (MLP) network is constructed to represent the 
plant

Architecture of adaptive neuro-identifier



Adaptive Simplified Neuro-Fuzzy
Controller 

Proposed control system structure



18-May-8

NFC architecture

    

NNN xxsignxf 
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Nonlinear Function (NLF):

Nx
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Control system structure

74/15



Online Adaptive Neuro Fuzzy Controller for Nonlinear 

Functions in the Input Layer for Damping Power 

System Oscillations



A fuzzy PSS is usually made adaptive by adjustment of input 
membership functions (premise) and consequent parameters (CPs).

Number of controller parameters depend on the shape and 
number of membership functions.
Scaling factors have received little attention in the adaptive fuzzy 
PSS design
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System Configuration
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Simulation results

78/15

Multi-machine power system.

Fig.14.  0.10 pu step inc-dec in torque of G3,

PSS on G3.
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Fig.15.  0.10 pu step inc-dec in torque of G3,

PSS on G1, G2 and G3.



1.5 MW VSWECS

Fig.2 Field oriented control scheme with speed sensor at generator
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Generator Speed with PI Controller

Generator Speed with ANFIS Controller
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Active Power with PI Controller

Active Power with ANFIS Controller

•Applied to the 1.5 MW wind turbine system.

• The wind speed starts at 11m/s, is changed to 9 m/s after 12 s



Experimental Results of Applying the 

ASNFC in a Real-Time System

Generator speed deviation in response to a 15% step increase 

in the torque reference (P=0.80 p.u. and 0.75 p.f. lag)

200 km Transmission Lines

Generator speed deviation in response to a three-phase to ground 

short circuit test at the middle of a 200 km transmission line with 

an unsuccessful re-closure (P=0.97 p.u. and 0.93 p.f. lag)



Concluding Remarks

• A wide spectrum of AI applications in power systems, from 
load forecast to maintenance, is being explored.

• A general survey of the type of AI applications that have 
been and are being explored for application in power system 
has been attempted.

• This is not an exhaustive survey and some other applications 
are also being pursued.

• Actual application of AI techniques, particularly for real-time 
applications, is lagging. One application that seems to have 
been adopted by the utilities is neural network based load 
forecast algorithms. 



Thank you

Questions?

Om Malik
maliko@ucalgary.ca


