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Background

As more renewable 
generation is added 
to the grid in Alberta

Utilities are 
investigating 

methods to increase 
transmission line 

capacity while 
minimizing cost

Dynamic Thermal 
Line Rating (DTLR) is 

one solution
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Types of Line Ratings

 The type of line rating that is used is dependent on 
the length of the transmission line
— Thermal limit (short lines – under 80 km)
— Voltage limit (medium lines – between 80 and 250 km)
— Stability limit (long lines – over 250 km)

 Dynamic thermal line rating is based on the thermal 
limit of a line, so is typically only used for short lines
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What is Dynamic Thermal Line Rating (DTLR)?

http://www.studyelectrical.com/2016/01/sag-in-overhead-transmission-conductor-lines.html
https://clipartpig.com/download/ThcokA3

https://pixabay.com/en/wind-energy-renewable-energy-wind-2029621/



What is DTLR?

Reasonable 
outer-range 

environmental 
conditions

IEEE/CIGRE 
Model Static Rating

Weather
station data

IEEE/CIGRE 
Model

Dynamic 
Thermal Line 

Rating

Presently, utilities use:

Switching to a DTLR requires:
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DTLR Benefits

 Increased system visibility
 Reduced aging
 Network planning
 Network reliability 
 Increased wind penetration
 Icing and galloping detection
 Maintaining clearance
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DTLR Methods

 DTLR can be calculated using either indirect or direct 
measurements

 Direct measurements include:
— Conductor temperature
— Sag

 Indirect measurements include:
— Line tension
— Weather conditions
— Fundamental frequency
— Electromagnetic waves
— Synchrophasor data
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Sag Methods

 These methods either directly or indirectly measure 
the position of the line to compare to minimum 
clearance requirements

 There are commercial products available that can 
measure/calculate the sag of a line using:
— Line tension (CAT-1)
— LiDAR (Lindsey Manufacturing)
— Fundamental frequency (Ampacimon)
— Electromagnectic waves (LineVision) 
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Weather-based Method

 Uses multiple weather parameters as input to a 
thermodynamic model (IEEE Standard 738-2012) to 
calculate the conductor temperature

 Weather variables include:
— Wind speed 
— Wind direction
— Ambient temperature
— Solar radiation

 Historical weather data can be used to interpolate or 
predict the rating
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IEEE Model

 IEEE Standard 738:

 Where: 
—𝑞𝑞c is the heat removed by convection (air movement)
—𝑞𝑞r is the heat removed by radiation to surrounding air
—𝑞𝑞s is the heat gained from solar radiation from the sun
— 𝐼𝐼2R(𝑇𝑇c) is the heat generated by the electron current flow 

in the conductor
— Tc is the core temperature of the conductor
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Convection Cooling

 Natural convection (no wind):

 Low wind:

 High wind:
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Convection Cooling

 The parameters pf (air density), 𝜇𝜇f (dynamic 
viscosity), 𝑘𝑘f (thermal conductivity) are dependent 
on ambient temperature and conductor type 

 Kangle is a function of the wind direction
 The convection cooling term is a non-linear function 

of the wind speed

13



Radiant Cooling

 Radiant cooling is dependent on conductor 
properties, diameter (D) and emissivity (ε), and 
temperature, conductor (Tc) and ambient (Ta)
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Solar Heat Gain

 The solar heat gain can be calculated using the above 
equation

 The solar heat gain is dependent on absorptivity (α), 
solar radiation (Qse), elevation and time of day

 Solar radiation can be measured by the weather 
station
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Current Heating

 Current heating is dependent on current and 
resistance

 Resistance is a function of conductor temperature

 Previous research has investigated implementing 
temperature-dependent resistance in optimal power 
flow 
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Transient Equation

 The previous equation is based on steady state
 The transient response for the conductor 

temperature due to a step change in current is:

 The transient response is a function of the heat 
capacity of the line

 The time constant is 5-15 minutes, depending on the 
weather conditions used
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Ambient-Adjusted Ratings

 Another form of DTLR is to only use changes in 
ambient temperature

 Can alleviate some of the risk associated with DTLR, 
as the variations in wind speed/direction are ignored

 Does not have as high of an increase compared to 
using a full DTLR
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Other Methods

 Synchrophasor data can also be used to calculate a 
DTLR

 Phasor Measurement Unit (PMU) data provides the 
voltage and current at different points in the grid

 The difference in voltage at two points can be 
combined with the relationship between resistance 
and temperature to determine the conductor 
temperature indirectly
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DTLR Implementation

 To implement DTLR on a transmission line, there are 
three main methods:
— Find the hottest-spot on the transmission line (limiting 

span) to determine where to install a device to determine 
what the minimum rating would be for the entire line

— Interpolate the rating over the terrain using multiple 
weather stations and mathematical modeling
 Idaho National Lab (INL) uses computational fluid dynamics 

(CFD) to interpolate wind data 
— Install sufficient number of devices to cover desired line
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DLTR Prediction

 Difficult to implement DTLR in real-time
 Some commercial DTLR products have prediction 

capabilities built-in
 Most prediction methods are based on historical 

weather data
 Time horizon can be 1 hour ahead up to 48 hours 

ahead
— The longer the time horizon, the lower the ampacity will 

be to preserve accuracy
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DTLR Challenges

 The limiting span can be difficult to determine
— Depends on the terrain and predominant wind direction
— Interpolating weather data can be computationally 

intensive
— Installing multiple devices can be expensive, depending on 

the technology used

 Collecting sufficient weather data 
 Communication between devices and EMS
 Integrating a dynamic rating into EMS
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Research Project

 The DTLR Research Project is focused on investigating 
the implementation of DTLR in Alberta

 Components of the project:
— Fuzzy DTLR Prediction
— Transient Impact
— Spatial DTLR Patterns

23



Gathering Weather Data

http://weclipart.com/power+lines+clipart
http://clipground.com/weather-station-clipart.html

https://fabulousbydesign.net/printable-map-of-alberta/

Environment 
Canada

Weather data



Transient Model Validation

 Transient model validated using conductor 
temperature data from ATCO

 The data was collected using a GE line monitoring 
relay mounted on a transmission line

 This relay measures the line current, the conductor 
temperature and the weather conditions
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Conductor Temperature Validation
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Using DTLR Transient Method

 Investigating the transient thermal impact on 
transmission lines when environmental conditions 
drastically change

 Investigating the thermal risk of updating the rating 
every hour using different confidence levels

 Used 3-minute weather data provided by AltaLink to 
compare the hourly predicted rating over one winter 
day to real-time transient conditions
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Weather Data
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Fuzzy Prediction Model

 A fuzzy clustering model is used for hour-ahead DTLR 
prediction

 Historical weather data (wind speed, wind direction 
and ambient temperature) are fed into the model

 A fuzzy model is used to quantify the hourly 
variations in weather variables

 Different confidence levels are defined based on the 
desired level of risk
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Predicted Ampacity
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Comparing Transient and Steady-State

Comparing transient and steady-state conductor 
temperature calculations using 95% confidence level
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Transient Tc for Two Confidence Levels

Comparing real-time ampacity to two 
different confidence levels

Transient conductor temperature for 
85 and 95% confidence levels
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Summary of Results

 Transient method is more accurate than using the 
steady-state method when compared to real-time 
conductor temperature measurements

 Changes in conductor temperature are mainly 
dependent on changes in wind speed and wind 
direction

 Trade-off between excepted risk and ampacity 
increase
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DTLR Patterns

 Is DTLR available when we need it, where we need 
it?

 Future congestion due to wind isn’t necessarily next 
to the wind farm

 If we add wind farms to Area A, do the weather 
conditions that produce the power correlate to 
favorable weather conditions in Area B, where the 
congestion is?

 How does the potential DTLR increase change over 
an area?
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Applicability of DTLR in Alberta

 Purpose is to investigate the applicability of DTLR in 
different areas of the province 

 Spatial Impact
— 4 different test cases (3 locations each)

 Temporal Impact
— 4 different locations over 4 different years

 Directional impact
— 2 different locations, 2 different directions each
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Weather Station Locations

https://fabulousbydesign.net/printable-map-of-alberta/

Environment 
Canada

Weather data



Spatial Impact
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Temporal Impact
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Impact of Line Direction - Calgary
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Impact of Line Direction - Edmonton
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Summary of Results

 The potential increase provided by using a DTLR is 
dependent on the location and the prevailing 
weather conditions for each year

 The static limit is not sufficient, as for every test case 
the static limit was exceeded by 7-20% when using 
two seasonal limits

 The diurnal patterns for the average hourly DTLR vary 
based on location

 Changing the line orientation from north-south to 
east-west makes minimal difference on the overall 
yearly potential DTLR values
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DTLR Clustering Analysis

 Received wind speed and direction data from Pan-
Canadian Wind Integration study

 Included 9,570 files of data for Alberta
 Data is sampled every 10 minutes over 2008-10
 Number of data points is reduced based on density 

of data points
 Fed data into DTLR model
 Clustered DTLR results using k-means clustering 
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Clustering Method

 K-means clustering is an unsupervised learning 
method, whose aim is to separate the input data into 
a specified number of groups with equal variance

 Unsupervised clustering methods are used when the 
cluster identity of each point is not pre-defined

 K-means clustering is selected for this analysis 
because of its ability to handle a large number of 
samples

 One of the challenges with using unsupervised 
learning models is the need to specify the number of 
clusters
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Cluster Number Comparison
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Monthly Cluster Results
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Predicting DTLR

46

Accuracy of DTLR Classification Using Location Data Compared to Historical 
DTLR For Different Numbers of Clusters



Summary of Results

 Data patterns change based on number of clusters
— Six clusters are selected for this analysis

 DTLR patterns change for each month
 More distinct clusters based on location during the 

summer months compared to the winter months
 Prediction accuracy is higher using DTLR data 

compared to location, but the difference is smaller 
for the summer months
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Summary

 DTLR is one solution to maximize transmission line 
capacity while minimizing cost

 Challenges exist in widespread implementation
 Research is being done to investigate using machine 

learning for temporal and spatial prediction
 More work needs to be done to translate this work 

into industry practice
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