Introduction to the 2018 Edition of IEEE 1584-2018 – Guide for Performing Arc-Flash Hazard Calculations

Daleep Mohla, DCM Consulting Dr. Wei-Jen Lee, UT Arlington

> Alberta, Canada July 31, 2019

Agenda

- Introduction
- Laboratory Testing & Model Development
- Information Needed to Conduct Study
- Calculation Examples
- Summary
- •Questions

,	
,	

Introduction

- Background Information
- Scope
- Purpose
- What is covered?
- What is not covered?
- Range of the Model

5

Scope

This guide provides models and an analytical process to enable calculation of the predicted thermal incident energy and the arc-flash boundary (AFB).

Applications include electrical equipment and conductors for three-phase alternating current (ac) voltages from 208 V to 15 kV.

7

Purpose

The purpose of the guide is to enable **qualified person(s)** to analyze power systems for the purpose of calculating the incident energy to which employees could be exposed during operations and maintenance work. Contractors and facility owners can use this information to help provide appropriate protection for employees in accordance with the requirements of applicable electrical workplace safety standards.

Not Covered

Not a part of the guide:

- Calculations for single-phase ac systems and direct current (dc) systems (but some guidance and references are provided for those applications).
- Recommendations for personal protective equipment (PPE) to mitigate arc-flash hazards are not included in this guide.

9

Low Voltage Sustainability

"Sustainable arcs are possible but less likely in three-phase systems operating at 240 V nominal or less with an available short-circuit current less than 2000 A"

			Electro	de Config	urations	
Electrode	ectrode Configurations & Orientation					
Electrode Configuration	Standard	Orientation	Configuration	Termination		
VOA	2002/2018	Vertical	Open air	In air		
VCB	2002/2018	Vertical	In a box	In air		
VCBB	2018	Vertical	In a box	Insulating Barrier		
НОА	2018	Horizontal	Open air	In air		
НСВ	2018	Horizontal	In a box	In air		

				Tests co	onducted
Overall Test Coun	t by Electrode C	Configuration:			
Electrode Configuration	Tests Performed	Voltage Range	Current Range	Gap Range	
VCB	485	0.208 ~ 14.8 kV	0.5 ~ 80 kA	6 ~ 250 mm	
VCBB	400	0.215 ~ 14.8 kV	0.5 ~ 65 kA	6 ~ 154 mm	
НСВ	460	0.215 ~ 14.8 kV	0.5 ~ 63 kA	10 ~ 254 mm	
VOA	251	0.240 ~ 14.8 kV	0.5 ~ 65 kA	10 ~ 154 mm	
HOA	259	0.240 ~ 14.8 kV	0.5 ~ 66 kA	10 ~ 154 mm	

Electrode Configuration - VOA

ange of Application of the IFFF	1584-2018 Mode	2		
Voltage Range (3-P kV LL)	I _{bf} (kA)	Gap (mm)	WD (inch) Fault Duration (cycles)
$0.208 \le V \le 0.600$	0.5 to 106	6.35 to 76.2	≥12	No Limit*
0.600 < V ≤ 15.0	0.2 to 65	19.05 to 254	≥ 12	No Limit
ergy flux is assumed to be constant as a function	of time			
Enclosure Dimensions	(inch or in ²)	Parame	eter	Value
Height	14 to 49*	Freque	ncy	50 Hz or 60 Hz
Width	(4 x Gap) to 49*	Phase	es	3-Phase
Opening Area	2401	Configura	ations	VCB, VCBB, HCB, VOA, HOA

Enclosure type	Equipment class	Default bus gaps (mm)	Enclosure size $(\mathbf{H} \times \mathbf{W} \times \mathbf{D})$
1	15 kV switchgear	152	$\begin{array}{c} 1143 \ \mathrm{mm} \times 762 \ \mathrm{mm} \times 762 \ \mathrm{mm} \\ (45 \ \mathrm{in} \times 30 \ \mathrm{in} \times 30 \ \mathrm{in}) \end{array}$
2	15 kV MCC	152	914.4 mm \times 914.4 mm \times 914.4 mm (36 in \times 36 in \times 36 in)
3	5 kV switchgear	104	914.4 mm × 914.4 mm × 914.4 mm (36 in × 36 in × 36 in)
4	5 kV switchgear	104	$\begin{array}{c} 1143\mathrm{mm}\times762\mathrm{mm}\times762\mathrm{mm}\\ (45\mathrm{in}\times30\mathrm{in}\times30\mathrm{in}) \end{array}$
5	5 kV MCC	104	$\begin{array}{c} 660.4 \text{ mm} \times 660.4 \text{ mm} \times 660.4 \text{ mm} \\ (26 \text{ in} \times 26 \text{ in} \times 26 \text{ in}) \end{array}$
6	Low-voltage switchgear	32	$508 \text{ mm} \times 508 \text{ mm} \times 508 \text{ mm}$ $(20 \text{ in} \times 20 \text{ in} \times 20 \text{ in})$
7	Shallow low-voltage MCCs and panelboards	25	$\begin{array}{c} 355.6{\rm nm}\times 304.8{\rm nm}\times {\leq} 203.2{\rm nm} \\ (14{\rm in}\times 12{\rm in}\times {\leq} 8{\rm in}) \end{array}$
8	Deep low-voltage MCCs and panelboards	25	$\begin{array}{c} 355.6 \ \mathrm{mm} \times 304.8 \ \mathrm{mm} \times > 203.2 \ \mathrm{mm} \\ (14 \ \mathrm{in} \times 12 \ \mathrm{in} \times > 8 \ \mathrm{in}) \end{array}$
7 or 8	Cable junction box	13	$\begin{array}{c} 355.6 \text{ nm} \times 304.8 \text{ nm} \times \leq 203.2 \text{ nm} \\ (14 \text{ in} \times 12 \text{ in} \times \leq 8 \text{ in}) \\ \text{or} \\ 355.6 \text{ nm} \times 304.8 \text{ nm} \times > 203.2 \text{ nm} \\ (14 \text{ in} \times 12 \text{ in} \times \leq 8 \text{ in}) \\ \leq 25.6 \text{ nm} \times 304.8 \text{ nm} \times 28 \text{ in} \\ \end{array}$

Similar to how IEEE 1584-2002 is being applied, the new arc-flash model can be applied to similar size equipment plus some additional sizes. This was accomplished by adjusting the incident energy model to account for the additional sizes. The new model may yield accurate or slightly conservative results for the tested sizes in Table G.18.

19

- Single Line, Modes of Operation;
- Short-Circuit Current(s) (rms)*;
- Clearing Time (Arc Duration)**;
- Enclosure Size;
- Working Distance;
- Electrode Configurations

* Use IEEE Std. 3002.3 – 2018 for Short Circuit Study and Analysis ** See 6.9.1 IEEE Std. 1584-2018 for Detail for rational to use maximum 2-second rule

Available Configurations in IEEE 1584-2018

Vertical Electrodes in the Enclosure (VCB) Electrodes are Terminated in the Middle of the Box

Vertical Electrodes in the Enclosure (VCBB) Electrodes are Terminated at the Bottom of the Box (Barrier Test)

29

Available Configurations in IEEE 1584-2018

Horizontal Electrodes in the Enclosure (HCB)

				Design of	the Testir
aps betwe	en electro	des and c	over surfa	ace.	
Voltage (kV)	BIL (kV)	Minimum Gap (inch)	Maximum Gap (inch)	Over Surface Phase-to- ground (inch)	
0.208 - 0.250	UL1558 NEMA MCC	0.25	0.75	0.5	
0.251 - 0.600	UL1558	0.5	2.0	4.0	
2.4	60	1.5	4.5	4.0	
4.16 (5)	60	1.5	4.5	4.0	
	95	3.0	6.0	7.0	

Summary - Model application overview

The model for incident energy calculations has been divided into the following two parts depending on the system opencircuit voltage, Voc:

— Model for $600 \text{ V} < V \text{oc} \le 15\ 000 \text{ V}$

— Model for $208 \text{ V} \leq Voc \leq 600 \text{ V}$

Sustainable arcs are possible but less likely in three-phase systems operating at 240 V nominal or less with an available short-circuit current less than 2000 A.

Parameter	IEEE- 1584- 2002	IEEE 1584- 2018
Voltage	208 V - 15 kV	208 V - 15 kV
Phases	3	3
Frequency	50 HZ or 60 HZ	50 HZ or 60 Hz
Bolted Fault current (RMS Symmetrical)	700A - 106kA	208V - 600 V 500 A - 106KA 601V - 15kV 200 A- 65 kA

Parameter	1584-2002	1584-2018
Based on No of tests	≈ 300	Over 1800
Electrode orientation	Vertical	Vertical & Horizontal
Configurations	Two: VOA & VCB	Five: VOA, VCB, VCBB, HOA & HCB
Box Correction Factor	No	Yes

Summary

- **Multiple** electrode orientation and configurations maybe present in electrical equipment
- It will require **qualified** person(s) knowledgeable in system analysis techniques and equipment construction and risk analysis to perform the calculations
- IEEE 1584- 2018 does not cover:
 - Single phase AC systems (but some guidance is provided)
 - Recommendation of selection of personal protective equipment (PPE) to reduce the risk of thermal burn based on results of IEEE 1584-2018
 - How to calculate system studies (short-circuit, coordination, etc.) covered by other IEEE standards

51

Questions?

<u>d.c.mohla@ieee.org</u> <u>wlee@uta.edu</u> <u>jphillips@brainfiller.com</u> <u>albert.marroquin@etap.com</u>